* refactor toc * refactor toc * Change to pydata-sphinx-theme and update packages requirement list for ReadtheDocs * Remove customized css for old theme * Add index page to each top bar section and limit dropdown maximum to be 4 * Use js to change 'More' to 'Libraries' * Add custom.css to conf.py for further css changes * Add BigDL logo and search bar * refactor toc * refactor toc and add overview * refactor toc and add overview * refactor toc and add overview * refactor get started * add paper and video section * add videos * add grid columns in landing page * add document roadmap to index * reapply search bar and github icon commit * reorg orca and chronos sections * Test: weaken ads by js * update: change left attrbute * update: add comments * update: change opacity to 0.7 * Remove useless theme template override for old theme * Add sidebar releases component in the home page * Remove sidebar search and restore top nav search button * Add BigDL handouts * Add back to homepage button to pages except from the home page * Update releases contents & styles in left sidebar * Add version badge to the top bar * Test: weaken ads by js * update: add comments * remove landing page contents * rfix chronos install * refactor install * refactor chronos section titles * refactor nano index * change chronos landing * revise chronos landing page * add document navigator to nano landing page * revise install landing page * Improve css of versions in sidebar * Make handouts image pointing to a page in new tab * add win guide to install * add dliib installation * revise title bar * rename index files * add index page for user guide * add dllib and orca API * update user guide landing page * refactor side bar * Remove extra style configuration of card components & make different card usage consistent * Remove extra styles for Nano how-to guides * Remove extra styles for Chronos how-to guides * Remove dark mode for now * Update index page description * Add decision tree for choosing BigDL libraries in index page * add dllib models api, revise core layers formats * Change primary & info color in light mode * Restyle card components * Restructure Chronos landing page * Update card style * Update BigDL library selection decision tree * Fix failed Chronos tutorials filter * refactor PPML documents * refactor and add friesian documents * add friesian arch diagram * update landing pages and fill key features guide index page * Restyle link card component * Style video frames in PPML sections * Adjust Nano landing page * put api docs to the last in index for convinience * Make badge horizontal padding smaller & small changes * Change the second letter of all header titles to be small capitalizd * Small changes on Chronos index page * Revise decision tree to make it smaller * Update: try to change the position of ads. * Bugfix: deleted nonexist file config * Update: update ad JS/CSS/config * Update: change ad. * Update: delete my template and change files. * Update: change chronos installation table color. * Update: change table font color to --pst-color-primary-text * Remove old contents in landing page sidebar * Restyle badge for usage in card footer again * Add quicklinks template on landing page sidebar * add quick links * Add scala logo * move tf, pytorch out of the link * change orca key features cards * fix typo * fix a mistake in wording * Restyle badge for card footer * Update decision tree * Remove useless html templates * add more api docs and update tutorials in dllib * update chronos install using new style * merge changes in nano doc from master * fix quickstart links in sidebar quicklinks * Make tables responsive * Fix overflow in api doc * Fix list indents problems in [User guide] section * Further fixes to nested bullets contents in [User Guide] section * Fix strange title in Nano 5-min doc * Fix list indent problems in [DLlib] section * Fix misnumbered list problems and other small fixes for [Chronos] section * Fix list indent problems and other small fixes for [Friesian] section * Fix list indent problem and other small fixes for [PPML] section * Fix list indent problem for developer guide * Fix list indent problem for [Cluster Serving] section * fix dllib links * Fix wrong relative link in section landing page Co-authored-by: Yuwen Hu <yuwen.hu@intel.com> Co-authored-by: Juntao Luo <1072087358@qq.com>
9.7 KiB
Distributed Hyper-Parameter Tuning
Orca AutoEstimator provides similar APIs as Orca Estimator for distributed hyper-parameter tuning.
1. AutoEstimator
To perform distributed hyper-parameter tuning, user can first create an Orca AutoEstimator from standard TensorFlow Keras or PyTorch model, and then call AutoEstimator.fit.
Under the hood, the Orca AutoEstimator generates different trials and schedules them on each mode in the cluster. Each trial runs a different combination of hyper parameters, sampled from the user-desired hyper-parameter space.
HDFS is used to save temporary results of each trial and all the results will be finally transferred to driver for further analysis.
2. Pytorch AutoEstimator
User could pass Creator Functions, including Data Creator Function, Model Creator Function and Optimizer Creator Function to AutoEstimator for training.
The Creator Functions should take a parameter of config as input and get the hyper-parameter values from config to enable hyper parameter search.
2.1 Data Creator Function
You can define the train and validation datasets using Data Creator Function. The Data Creator Function takes config as input and returns a torch.utils.data.DataLoader object, as shown below.
# "batch_size" is the hyper-parameter to be tuned.
def train_loader_creator(config):
train_loader = torch.utils.data.DataLoader(
datasets.MNIST(dir, train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=config["batch_size"], shuffle=True)
return train_loader
The input data for Pytorch AutoEstimator can be a Data Creator Function or a tuple of numpy ndarrays in the form of (x, y), where x is training input data and y is training target data.
2.2 Model Creator Function
Model Creator Function also takes config as input and returns a torch.nn.Module object, as shown below.
import torch.nn as nn
class LeNet(nn.Module):
def __init__(self, fc1_hidden_size=500):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2d(1, 20, 5, 1)
self.conv2 = nn.Conv2d(20, 50, 5, 1)
self.fc1 = nn.Linear(4*4*50, fc1_hidden_size)
self.fc2 = nn.Linear(fc1_hidden_size, 10)
def forward(self, x):
pass
def model_creator(config):
# "fc1_hidden_size" is the hyper-parameter to be tuned.
model = LeNet(fc1_hidden_size=config["fc1_hidden_size"])
return model
2.3 Optimizer Creator Function
Optimizer Creator Function takes model and config as input, and returns a torch.optim.Optimizer object.
import torch
def optim_creator(model, config):
return torch.optim.Adam(model.parameters(), lr=config["lr"])
Note that the optimizer argument in Pytorch AutoEstimator constructor could be a Optimizer Creator Function or a string, which is the name of Pytorch Optimizer. The above Optimizer Creator Function has the same functionality with "Adam".
2.4 Create and Fit Pytorch AutoEstimator
User could create a Pytorch AutoEstimator as below.
from bigdl.orca.automl.auto_estimator import AutoEstimator
auto_est = AutoEstimator.from_torch(model_creator=model_creator,
optimizer=optim_creator,
loss=nn.NLLLoss(),
logs_dir="/tmp/orca_automl_logs",
resources_per_trial={"cpu": 2},
name="lenet_mnist")
Then user can perform distributed hyper-parameter tuning as follows. For more details about the search_space argument, view the search space and search algorithms page.
auto_est.fit(data=train_loader_creator,
validation_data=test_loader_creator,
search_space=search_space,
n_sampling=2,
epochs=1,
metric="accuracy")
Finally, user can get the best learned model and the best hyper-parameters for further deployment.
best_model = auto_est.get_best_model() # a `torch.nn.Module` object
best_config = auto_est.get_best_config() # a dictionary of hyper-parameter names and values.
View the related Python API doc for more details.
3. TensorFlow/Keras AutoEstimator
Users can create an AutoEstimator for TensorFlow Keras from a tf.keras model (using a Model Creator Function). For example:
def model_creator(config):
model = tf.keras.models.Sequential([tf.keras.layers.Dense(config["hidden_size"],
input_shape=(1,)),
tf.keras.layers.Dense(1)])
model.compile(loss="mse",
optimizer=tf.keras.optimizers.SGD(config["lr"]),
metrics=["mse"])
return model
auto_est = AutoEstimator.from_keras(model_creator=model_creator,
logs_dir="/tmp/orca_automl_logs",
resources_per_trial={"cpu": 2},
name="auto_keras")
Then user can perform distributed hyper-parameter tuning as follows. For more details about search_space, view the search space and search algorithms page.
auto_est.fit(data=train_data,
validation_data=val_data,
search_space=search_space,
n_sampling=2,
epochs=1,
metric="accuracy")
The data and validation_data in fit method can only be a tuple of numpy ndarrays. We haven't support Data Create Function now. The numpy ndarray should also be in the form of (x, y), where x is training input data and y is training target data.
Finally, user can get the best learned model and the best hyper-parameters for further deployment.
best_model = auto_est.get_best_model() # a `torch.nn.Module` object
best_config = auto_est.get_best_config() # a dictionary of hyper-parameter names and values.
View the related Python API doc for more details.
4. Search Space and Search Algorithms
For Hyper-parameter Optimization, user should define the search space of various hyper-parameter values for neural network training, as well as how to search through the chosen hyper-parameter space.
4.1 Basic Search Algorithms
For basic search algorithms like Grid Search and Random Search, we provide several sampling functions with automl.hp. See API doc for more details.
AutoEstimator requires a dictionary for the search_space argument in fit.
In the dictionary, the keys are the hyper-parameter names, and the values specify how to sample the search spaces for the hyper-parameters.
from bigdl.orca.automl import hp
search_space = {
"fc1_hidden_size": hp.grid_search([500, 600]),
"lr": hp.loguniform(0.001, 0.1),
"batch_size": hp.choice([160, 320, 640]),
}
4.2 Advanced Search Algorithms
Beside grid search and random search, user could also choose to use some advanced hyper-parameter optimization methods, such as Ax, Bayesian Optimization, Scikit-Optimize, etc. We supported all Search Algorithms in Ray Tune. View the Ray Tune Search Algorithms for more details. Note that you should install the dependency for your search algorithm manually.
Take bayesian optimization as an instance. You need to first install the dependency with
pip install bayesian-optimization
And pass the search algorithm name to search_alg in AutoEstimator.fit.
from bigdl.orca.automl import hp
search_space = {
"width": hp.uniform(0, 20),
"height": hp.uniform(-100, 100)
}
auto_estimator.fit(
data,
search_space=search_space,
metric="mean_loss",
mode="min",
search_alg="bayesopt",
)
See API Doc for more details.
5. Scheduler
Scheduler can stop/pause/tweak the hyper-parameters of running trials, making the hyper-parameter tuning process much efficient.
We support all Schedulers in Ray Tune. See Ray Tune Schedulers for more details.
User can pass the Scheduler name to scheduler in AutoEstimator.fit. The Scheduler names supported are "fifo", "hyperband", "async_hyperband", "median_stopping_rule", "hb_bohb", "pbt", "pbt_replay".
The default scheduler is "fifo", which just runs trials in submission order.
See examples below about how to use Scheduler in AutoEstimator.
scheduler_params = dict(
max_t=50,
grace_period=1,
reduction_factor=3,
brackets=3,
)
auto_estimator.fit(
data,
search_space=search_space,
metric="mean_loss",
mode="min",
search_alg="skopt",
scheduler = "AsyncHyperBand",
scheduler_params=scheduler_params
)
Scheduler shares the same parameters as ray tune schedulers.
And scheduler_params are extra parameters for scheduler other than metric and mode.