ipex-llm/python/llm/src/ipex_llm/transformers/models/yuan.py
2024-04-26 14:42:17 +08:00

452 lines
20 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://huggingface.co/IEITYuan/Yuan2-2B-hf/blob/7ab7b3c18eb8e5232ce2a3f720d4e6f4b53a2806/yuan_hf_model.py
# which is licensed under Apache License 2.0:
#
# https://huggingface.co/IEITYuan/Yuan2-2B-hf/blob/7ab7b3c18eb8e5232ce2a3f720d4e6f4b53a2806/README.md#%E5%A3%B0%E6%98%8E%E4%B8%8E%E5%8D%8F%E8%AE%AEterms-and-conditions
#
import copy
import math
from einops import rearrange
from typing import Optional, Tuple
import torch
import torch.nn as nn
from ipex_llm.utils.common import invalidInputError
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb, \
apply_rotary_pos_emb_cache_freq_xpu, mlp_fusion_check, fp16_fusion_check
from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
from ipex_llm.transformers.models.utils import init_fp8_kv_cache, append_fp8_kv_cache, \
restore_fp8_kv_cache, use_quantize_kv_cache
from ipex_llm.transformers.models.utils import is_enough_kv_cache_room_4_31, SILU
import os
KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256))
def should_use_fuse_rope(self, hidden_states, position_ids):
use_fuse_rope = hidden_states.device.type == "xpu"
use_fuse_rope = use_fuse_rope and not (self.training and hidden_states.requires_grad)
use_fuse_rope = use_fuse_rope and position_ids is not None
return use_fuse_rope
def yuan_localized_filtering_forward(
self,
inputs: torch.Tensor,
before_hidden_states: torch.Tensor,
dtype: torch.dtype,
):
if self.conv1.weight.dtype != torch.half:
self.half()
invalidInputError(self.lf_conv2d_num_pad == 1, "padding must be 1")
invalidInputError(not self.training, ("training is not supported for now, "
"please call model.eval() before inference"))
if before_hidden_states is None:
inputs = inputs.half()
lf_output = self._inference_forward(inputs, None)
else:
# only change next token logic
bsz, seq_len, embed_dim = inputs.size()
seq_len_before, _, _ = before_hidden_states.size()
invalidInputError(seq_len == 1 and seq_len_before == 3,
f"wrong sequence length: {seq_len} {seq_len_before}")
residual = before_hidden_states[-1:, :, :]
inputs = before_hidden_states.view(3, 1, bsz, embed_dim).permute(2, 3, 0, 1)
output1 = self.conv1(inputs)
output2 = self.conv2(output1[:, :, 1:-1, :])
output2 = output2[:, :, 1:-1, :]
output2 = output2.view(1, bsz, embed_dim)
invalidInputError(output2.shape == residual.shape,
f"wrong shape: {output2.shape} {residual.shape}")
lf_output = self.output_layernorm(output2 + residual)
lf_output = lf_output.transpose(0, 1)
lf_output = lf_output.to(dtype)
return lf_output
def yuan_mlp_forward(
self,
x: torch.Tensor,
residual=None
) -> torch.Tensor:
x_2d = x.view(-1, x.shape[-1])
bsz, hidden_size = x_2d.shape
qtype = getattr(self.up_proj, "qtype", None)
if mlp_fusion_check(x_2d, qtype, self.training):
import linear_q4_0
if not x_2d.is_contiguous():
x_2d = x_2d.contiguous()
out = self.down_proj(linear_q4_0.mlp_forward_xpu(
x_2d, self.up_proj.weight.data, self.gate_proj.weight.data,
x_2d.shape[0], x_2d.shape[1], self.up_proj.out_len,
SILU, qtype
))
if residual is not None:
return out + residual
else:
return out
elif fp16_fusion_check(self.up_proj, x, self.training) and \
hidden_size == 4096 and bsz == 1:
hidden_states1 = torch.ops.torch_ipex.mm_silu(x, self.up_proj.weight)
hidden_states = torch.ops.torch_ipex.mm_resmul(
x, self.gate_proj.weight, hidden_states1
)
if residual is None:
hidden_states = torch.matmul(hidden_states, self.down_proj.weight)
else:
attn_output = torch.addmm(
residual.flatten(0, -2),
hidden_states.flatten(0, -2),
self.down_proj.weight,
beta=1,
)
hidden_states = attn_output.view(x.shape)
return hidden_states
else:
out = self.down_proj(self.act_fn(self.up_proj(x)) * self.gate_proj(x))
if residual is not None:
return out + residual
else:
return out
def yuan_attention_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if use_quantize_kv_cache(self.merged_q_proj, hidden_states):
forward_function = yuan_attention_forward_quantized
else:
forward_function = yuan_attention_forward_origin
return forward_function(
self=self,
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
def yuan_attention_forward_quantized(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
device = hidden_states.device
before_hidden_states = None
is_first_step = False
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
invalidInputError(use_cache, "use_cache=True is needed")
invalidInputError(not self.use_shareqk, "use_shareqk is not supported for now")
if past_key_value is None:
is_first_step = True
if q_len >= 2:
before_hidden_states = hidden_states[:, -2:, :].transpose(0, 1).half()
else:
before_hidden_states = torch.zeros(2, bsz, self.hidden_size,
dtype=torch.half, device=hidden_states.device)
before_hidden_states[-1:, :, :] = hidden_states[:, -1:, :].transpose(0, 1)
else:
before_hidden_states = past_key_value[2]
this_hidden_states = torch.cat([
before_hidden_states,
hidden_states.transpose(0, 1).half(),
], dim=0)
before_hidden_states = this_hidden_states[-2:, :, ]
value_states = \
self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
if is_first_step:
hidden_states = yuan_localized_filtering_forward(self.lf_gate, hidden_states,
None, hidden_states.dtype)
else:
hidden_states = yuan_localized_filtering_forward(self.lf_gate, hidden_states,
this_hidden_states, hidden_states.dtype)
query_states = self.merged_q_proj(hidden_states)
key_states = self.merged_k_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
if use_fuse_rope:
query_states, key_states = apply_rotary_pos_emb_cache_freq_xpu(query_states,
key_states,
sin, cos,
"yuan",
position_ids)
else:
query_states, key_states = apply_rotary_pos_emb(query_states,
key_states,
cos, sin,
position_ids,
"yuan")
if past_key_value is None:
# should use origin attn here
attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
invalidInputError(attn_weights.size() == (bsz, self.num_heads, q_len, kv_seq_len),
"Attention weights should be of size "
f"{(bsz, self.num_heads, q_len, kv_seq_len)}, "
f"but is {attn_weights.size()}")
if attention_mask is not None:
invalidInputError(attention_mask.size() == (bsz, 1, q_len, kv_seq_len),
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, "
f"but is {attention_mask.size()}")
attn_weights = attn_weights + attention_mask
attn_weights = torch.max(attn_weights,
torch.tensor(torch.finfo(attn_weights.dtype).min))
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1,
dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if use_cache:
k_cache, v_cache = init_fp8_kv_cache(
bsz, self.num_heads, kv_seq_len, self.head_dim, device=device
)
key_states, value_states = append_fp8_kv_cache(k_cache, v_cache,
key_states, value_states)
past_key_value = (key_states, value_states, before_hidden_states)
else:
k_cache, v_cache, _ = past_key_value
key_states, value_states = append_fp8_kv_cache(k_cache, v_cache,
key_states, value_states)
past_key_value = (key_states, value_states, before_hidden_states)
# torch.matmul
if query_states.size(2) != 1 or device.type != 'xpu':
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
else:
import linear_q4_0
attn_weights = linear_q4_0.query_key_fp8_matmul(query_states, key_states)
attn_weights = attn_weights / math.sqrt(self.head_dim)
invalidInputError(attn_weights.size() == (bsz, self.num_heads, q_len, kv_seq_len),
"Attention weights should be of size "
f"{(bsz, self.num_heads, q_len, kv_seq_len)}, "
f"but is {attn_weights.size()}")
if attention_mask is not None:
invalidInputError(attention_mask.size() == (bsz, 1, q_len, kv_seq_len),
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, "
f"but is {attention_mask.size()}")
attn_weights = attn_weights + attention_mask
attn_weights = torch.max(attn_weights,
torch.tensor(torch.finfo(attn_weights.dtype).min))
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1,
dtype=torch.float32).to(query_states.dtype)
if query_states.size(2) != 1 or device.type != 'xpu':
attn_output = torch.matmul(attn_weights, value_states)
else:
import linear_q4_0
attn_output = linear_q4_0.attn_value_fp8_matmul(attn_weights, value_states)
invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim),
"`attn_output` should be of size "
f"{(bsz, self.num_heads, q_len, self.head_dim)}, "
f"but is {attn_output.size()}")
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def yuan_attention_forward_origin(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
bsz, q_len, _ = hidden_states.size()
device = hidden_states.device
before_hidden_states = None
is_first_step = False
self.use_shareqk = False
enough_kv_room = is_enough_kv_cache_room_4_31(past_key_value)
invalidInputError(use_cache, "use_cache=True is needed")
invalidInputError(not self.use_shareqk, "use_shareqk is not supported for now")
if past_key_value is None:
is_first_step = True
if q_len >= 2:
before_hidden_states = hidden_states[:, -2:, :].transpose(0, 1).half()
else:
before_hidden_states = torch.zeros(2, bsz, self.hidden_size,
dtype=torch.half, device=hidden_states.device)
before_hidden_states[-1:, :, :] = hidden_states[:, -1:, :].transpose(0, 1)
else:
before_hidden_states = past_key_value[2]
this_hidden_states = torch.cat([
before_hidden_states,
hidden_states.transpose(0, 1).half(),
], dim=0)
before_hidden_states = this_hidden_states[-2:, :, ]
value_states = \
self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
if is_first_step:
hidden_states = yuan_localized_filtering_forward(self.lf_gate, hidden_states,
None, hidden_states.dtype)
else:
hidden_states = yuan_localized_filtering_forward(self.lf_gate, hidden_states,
this_hidden_states, hidden_states.dtype)
query_states = self.merged_q_proj(hidden_states)
key_states = self.merged_k_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
if use_fuse_rope:
query_states, key_states = apply_rotary_pos_emb_cache_freq_xpu(query_states,
key_states,
sin, cos,
"yuan",
position_ids)
else:
query_states, key_states = apply_rotary_pos_emb(query_states,
key_states,
cos, sin,
position_ids,
"yuan")
if past_key_value is not None:
# reuse k, v, self_attention
cache_k = past_key_value[0]
cache_v = past_key_value[1]
if not enough_kv_room:
# allocate new
new_cache_k, new_cache_v = extend_kv_cache(bsz,
self.num_heads,
self.head_dim,
cache_k.size(2),
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
dtype=cache_k.dtype,
device=device)
new_cache_k[:] = cache_k
new_cache_v[:] = cache_v
cache_k = new_cache_k
cache_v = new_cache_v
key_states, value_states = append_kv_cache(cache_k, cache_v, key_states, value_states)
elif use_cache:
max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
new_key_states, new_value_states = init_kv_cache(bsz,
self.num_heads,
self.head_dim,
kv_seq_len,
max_cache_length,
dtype=key_states.dtype,
device=device)
new_key_states[:] = key_states
new_value_states[:] = value_states
key_states = new_key_states
value_states = new_value_states
past_key_value = \
(key_states, value_states, before_hidden_states) if use_cache else None
attn_weights = \
torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
invalidInputError(attn_weights.size() == (bsz, self.num_heads, q_len, kv_seq_len),
"Attention weights should be of size "
f"{(bsz, self.num_heads, q_len, kv_seq_len)}, "
f"but is {attn_weights.size()}")
if attention_mask is not None:
invalidInputError(attention_mask.size() == (bsz, 1, q_len, kv_seq_len),
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, "
f"but is {attention_mask.size()}")
attn_weights = attn_weights + attention_mask
attn_weights = torch.max(attn_weights,
torch.tensor(torch.finfo(attn_weights.dtype).min))
# upcast attention to fp32
attn_weights = \
torch.nn.functional.softmax(attn_weights,
dim=-1,
dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim),
"`attn_output` should be of size "
f"{(bsz, self.num_heads, q_len, self.head_dim)}, "
f"but is {attn_output.size()}")
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value