# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Some parts of this file is adapted from # https://huggingface.co/IEITYuan/Yuan2-2B-hf/blob/7ab7b3c18eb8e5232ce2a3f720d4e6f4b53a2806/yuan_hf_model.py # which is licensed under Apache License 2.0: # # https://huggingface.co/IEITYuan/Yuan2-2B-hf/blob/7ab7b3c18eb8e5232ce2a3f720d4e6f4b53a2806/README.md#%E5%A3%B0%E6%98%8E%E4%B8%8E%E5%8D%8F%E8%AE%AEterms-and-conditions # import copy import math from einops import rearrange from typing import Optional, Tuple import torch import torch.nn as nn from ipex_llm.utils.common import invalidInputError from ipex_llm.transformers.models.utils import apply_rotary_pos_emb, \ apply_rotary_pos_emb_cache_freq_xpu, mlp_fusion_check, fp16_fusion_check from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache from ipex_llm.transformers.models.utils import init_fp8_kv_cache, append_fp8_kv_cache, \ restore_fp8_kv_cache, use_quantize_kv_cache from ipex_llm.transformers.models.utils import is_enough_kv_cache_room_4_31, SILU import os KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256)) def should_use_fuse_rope(self, hidden_states, position_ids): use_fuse_rope = hidden_states.device.type == "xpu" use_fuse_rope = use_fuse_rope and not (self.training and hidden_states.requires_grad) use_fuse_rope = use_fuse_rope and position_ids is not None return use_fuse_rope def yuan_localized_filtering_forward( self, inputs: torch.Tensor, before_hidden_states: torch.Tensor, dtype: torch.dtype, ): if self.conv1.weight.dtype != torch.half: self.half() invalidInputError(self.lf_conv2d_num_pad == 1, "padding must be 1") invalidInputError(not self.training, ("training is not supported for now, " "please call model.eval() before inference")) if before_hidden_states is None: inputs = inputs.half() lf_output = self._inference_forward(inputs, None) else: # only change next token logic bsz, seq_len, embed_dim = inputs.size() seq_len_before, _, _ = before_hidden_states.size() invalidInputError(seq_len == 1 and seq_len_before == 3, f"wrong sequence length: {seq_len} {seq_len_before}") residual = before_hidden_states[-1:, :, :] inputs = before_hidden_states.view(3, 1, bsz, embed_dim).permute(2, 3, 0, 1) output1 = self.conv1(inputs) output2 = self.conv2(output1[:, :, 1:-1, :]) output2 = output2[:, :, 1:-1, :] output2 = output2.view(1, bsz, embed_dim) invalidInputError(output2.shape == residual.shape, f"wrong shape: {output2.shape} {residual.shape}") lf_output = self.output_layernorm(output2 + residual) lf_output = lf_output.transpose(0, 1) lf_output = lf_output.to(dtype) return lf_output def yuan_mlp_forward( self, x: torch.Tensor, residual=None ) -> torch.Tensor: x_2d = x.view(-1, x.shape[-1]) bsz, hidden_size = x_2d.shape qtype = getattr(self.up_proj, "qtype", None) if mlp_fusion_check(x_2d, qtype, self.training): import linear_q4_0 if not x_2d.is_contiguous(): x_2d = x_2d.contiguous() out = self.down_proj(linear_q4_0.mlp_forward_xpu( x_2d, self.up_proj.weight.data, self.gate_proj.weight.data, x_2d.shape[0], x_2d.shape[1], self.up_proj.out_len, SILU, qtype )) if residual is not None: return out + residual else: return out elif fp16_fusion_check(self.up_proj, x, self.training) and \ hidden_size == 4096 and bsz == 1: hidden_states1 = torch.ops.torch_ipex.mm_silu(x, self.up_proj.weight) hidden_states = torch.ops.torch_ipex.mm_resmul( x, self.gate_proj.weight, hidden_states1 ) if residual is None: hidden_states = torch.matmul(hidden_states, self.down_proj.weight) else: attn_output = torch.addmm( residual.flatten(0, -2), hidden_states.flatten(0, -2), self.down_proj.weight, beta=1, ) hidden_states = attn_output.view(x.shape) return hidden_states else: out = self.down_proj(self.act_fn(self.up_proj(x)) * self.gate_proj(x)) if residual is not None: return out + residual else: return out def yuan_attention_forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if use_quantize_kv_cache(self.merged_q_proj, hidden_states): forward_function = yuan_attention_forward_quantized else: forward_function = yuan_attention_forward_origin return forward_function( self=self, hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) def yuan_attention_forward_quantized( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() device = hidden_states.device before_hidden_states = None is_first_step = False use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids) invalidInputError(use_cache, "use_cache=True is needed") invalidInputError(not self.use_shareqk, "use_shareqk is not supported for now") if past_key_value is None: is_first_step = True if q_len >= 2: before_hidden_states = hidden_states[:, -2:, :].transpose(0, 1).half() else: before_hidden_states = torch.zeros(2, bsz, self.hidden_size, dtype=torch.half, device=hidden_states.device) before_hidden_states[-1:, :, :] = hidden_states[:, -1:, :].transpose(0, 1) else: before_hidden_states = past_key_value[2] this_hidden_states = torch.cat([ before_hidden_states, hidden_states.transpose(0, 1).half(), ], dim=0) before_hidden_states = this_hidden_states[-2:, :, ] value_states = \ self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) if is_first_step: hidden_states = yuan_localized_filtering_forward(self.lf_gate, hidden_states, None, hidden_states.dtype) else: hidden_states = yuan_localized_filtering_forward(self.lf_gate, hidden_states, this_hidden_states, hidden_states.dtype) query_states = self.merged_q_proj(hidden_states) key_states = self.merged_k_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) if use_fuse_rope: query_states, key_states = apply_rotary_pos_emb_cache_freq_xpu(query_states, key_states, sin, cos, "yuan", position_ids) else: query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids, "yuan") if past_key_value is None: # should use origin attn here attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) invalidInputError(attn_weights.size() == (bsz, self.num_heads, q_len, kv_seq_len), "Attention weights should be of size " f"{(bsz, self.num_heads, q_len, kv_seq_len)}, " f"but is {attn_weights.size()}") if attention_mask is not None: invalidInputError(attention_mask.size() == (bsz, 1, q_len, kv_seq_len), f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, " f"but is {attention_mask.size()}") attn_weights = attn_weights + attention_mask attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)) # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_output = torch.matmul(attn_weights, value_states) if use_cache: k_cache, v_cache = init_fp8_kv_cache( bsz, self.num_heads, kv_seq_len, self.head_dim, device=device ) key_states, value_states = append_fp8_kv_cache(k_cache, v_cache, key_states, value_states) past_key_value = (key_states, value_states, before_hidden_states) else: k_cache, v_cache, _ = past_key_value key_states, value_states = append_fp8_kv_cache(k_cache, v_cache, key_states, value_states) past_key_value = (key_states, value_states, before_hidden_states) # torch.matmul if query_states.size(2) != 1 or device.type != 'xpu': key_states, value_states = restore_fp8_kv_cache(key_states, value_states, query_states.dtype) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) else: import linear_q4_0 attn_weights = linear_q4_0.query_key_fp8_matmul(query_states, key_states) attn_weights = attn_weights / math.sqrt(self.head_dim) invalidInputError(attn_weights.size() == (bsz, self.num_heads, q_len, kv_seq_len), "Attention weights should be of size " f"{(bsz, self.num_heads, q_len, kv_seq_len)}, " f"but is {attn_weights.size()}") if attention_mask is not None: invalidInputError(attention_mask.size() == (bsz, 1, q_len, kv_seq_len), f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, " f"but is {attention_mask.size()}") attn_weights = attn_weights + attention_mask attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)) # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) if query_states.size(2) != 1 or device.type != 'xpu': attn_output = torch.matmul(attn_weights, value_states) else: import linear_q4_0 attn_output = linear_q4_0.attn_value_fp8_matmul(attn_weights, value_states) invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim), "`attn_output` should be of size " f"{(bsz, self.num_heads, q_len, self.head_dim)}, " f"but is {attn_output.size()}") attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value def yuan_attention_forward_origin( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids) bsz, q_len, _ = hidden_states.size() device = hidden_states.device before_hidden_states = None is_first_step = False self.use_shareqk = False enough_kv_room = is_enough_kv_cache_room_4_31(past_key_value) invalidInputError(use_cache, "use_cache=True is needed") invalidInputError(not self.use_shareqk, "use_shareqk is not supported for now") if past_key_value is None: is_first_step = True if q_len >= 2: before_hidden_states = hidden_states[:, -2:, :].transpose(0, 1).half() else: before_hidden_states = torch.zeros(2, bsz, self.hidden_size, dtype=torch.half, device=hidden_states.device) before_hidden_states[-1:, :, :] = hidden_states[:, -1:, :].transpose(0, 1) else: before_hidden_states = past_key_value[2] this_hidden_states = torch.cat([ before_hidden_states, hidden_states.transpose(0, 1).half(), ], dim=0) before_hidden_states = this_hidden_states[-2:, :, ] value_states = \ self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) if is_first_step: hidden_states = yuan_localized_filtering_forward(self.lf_gate, hidden_states, None, hidden_states.dtype) else: hidden_states = yuan_localized_filtering_forward(self.lf_gate, hidden_states, this_hidden_states, hidden_states.dtype) query_states = self.merged_q_proj(hidden_states) key_states = self.merged_k_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) if use_fuse_rope: query_states, key_states = apply_rotary_pos_emb_cache_freq_xpu(query_states, key_states, sin, cos, "yuan", position_ids) else: query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids, "yuan") if past_key_value is not None: # reuse k, v, self_attention cache_k = past_key_value[0] cache_v = past_key_value[1] if not enough_kv_room: # allocate new new_cache_k, new_cache_v = extend_kv_cache(bsz, self.num_heads, self.head_dim, cache_k.size(2), kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH, dtype=cache_k.dtype, device=device) new_cache_k[:] = cache_k new_cache_v[:] = cache_v cache_k = new_cache_k cache_v = new_cache_v key_states, value_states = append_kv_cache(cache_k, cache_v, key_states, value_states) elif use_cache: max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH new_key_states, new_value_states = init_kv_cache(bsz, self.num_heads, self.head_dim, kv_seq_len, max_cache_length, dtype=key_states.dtype, device=device) new_key_states[:] = key_states new_value_states[:] = value_states key_states = new_key_states value_states = new_value_states past_key_value = \ (key_states, value_states, before_hidden_states) if use_cache else None attn_weights = \ torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) invalidInputError(attn_weights.size() == (bsz, self.num_heads, q_len, kv_seq_len), "Attention weights should be of size " f"{(bsz, self.num_heads, q_len, kv_seq_len)}, " f"but is {attn_weights.size()}") if attention_mask is not None: invalidInputError(attention_mask.size() == (bsz, 1, q_len, kv_seq_len), f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, " f"but is {attention_mask.size()}") attn_weights = attn_weights + attention_mask attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)) # upcast attention to fp32 attn_weights = \ torch.nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_output = torch.matmul(attn_weights, value_states) invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim), "`attn_output` should be of size " f"{(bsz, self.num_heads, q_len, self.head_dim)}, " f"but is {attn_output.size()}") attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value