136 lines
		
	
	
	
		
			5.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			136 lines
		
	
	
	
		
			5.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
 | 
						|
import os
 | 
						|
import time
 | 
						|
import argparse
 | 
						|
import requests
 | 
						|
import torch
 | 
						|
from PIL import Image
 | 
						|
from ipex_llm.transformers import AutoModel
 | 
						|
from transformers import AutoTokenizer, AutoProcessor
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for openbmb/MiniCPM-V-2_6 model')
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-V-2_6",
 | 
						|
                        help='The huggingface repo id for the openbmb/MiniCPM-V-2_6 model to be downloaded'
 | 
						|
                             ', or the path to the huggingface checkpoint folder')
 | 
						|
    parser.add_argument("--lowbit-path", type=str,
 | 
						|
        default="",
 | 
						|
        help="The path to the saved model folder with IPEX-LLM low-bit optimization. "
 | 
						|
             "Leave it blank if you want to load from the original model. "
 | 
						|
             "If the path does not exist, model with low-bit optimization will be saved there."
 | 
						|
             "Otherwise, model with low-bit optimization will be loaded from the path.",
 | 
						|
    )
 | 
						|
    parser.add_argument('--image-url-or-path', type=str,
 | 
						|
                        default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',
 | 
						|
                        help='The URL or path to the image to infer')
 | 
						|
    parser.add_argument('--prompt', type=str, default="What is in the image?",
 | 
						|
                        help='Prompt to infer')
 | 
						|
    parser.add_argument('--stream', action='store_true',
 | 
						|
                        help='Whether to chat in streaming mode')
 | 
						|
 | 
						|
    args = parser.parse_args()
 | 
						|
    model_path = args.repo_id_or_model_path
 | 
						|
    image_path = args.image_url_or_path
 | 
						|
 | 
						|
    lowbit_path = args.lowbit_path
 | 
						|
    
 | 
						|
    if not lowbit_path or not os.path.exists(lowbit_path):
 | 
						|
        # Load model in 4 bit,
 | 
						|
        # which convert the relevant layers in the model into INT4 format
 | 
						|
        # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
 | 
						|
        # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
 | 
						|
        model = AutoModel.from_pretrained(model_path, 
 | 
						|
                                        load_in_low_bit="sym_int4",
 | 
						|
                                        optimize_model=True,
 | 
						|
                                        trust_remote_code=True,
 | 
						|
                                        use_cache=True,
 | 
						|
                                        modules_to_not_convert=["vpm", "resampler"])
 | 
						|
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
						|
                                                  trust_remote_code=True)
 | 
						|
    else:
 | 
						|
        model = AutoModel.load_low_bit(lowbit_path, 
 | 
						|
                                       optimize_model=True,
 | 
						|
                                       trust_remote_code=True,
 | 
						|
                                       use_cache=True,
 | 
						|
                                       modules_to_not_convert=["vpm", "resampler"])
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(lowbit_path,
 | 
						|
                                                  trust_remote_code=True)
 | 
						|
    
 | 
						|
    model.eval()
 | 
						|
 | 
						|
    if lowbit_path and not os.path.exists(lowbit_path):
 | 
						|
        processor = AutoProcessor.from_pretrained(model_path,
 | 
						|
                                                trust_remote_code=True)
 | 
						|
        model.save_low_bit(lowbit_path)
 | 
						|
        tokenizer.save_pretrained(lowbit_path)
 | 
						|
        processor.save_pretrained(lowbit_path)
 | 
						|
 | 
						|
    model = model.half().to('xpu')
 | 
						|
 | 
						|
    query = args.prompt
 | 
						|
    if os.path.exists(image_path):
 | 
						|
       image = Image.open(image_path).convert('RGB')
 | 
						|
    else:
 | 
						|
       image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')
 | 
						|
 | 
						|
    # Generate predicted tokens
 | 
						|
    # here the prompt tuning refers to https://huggingface.co/openbmb/MiniCPM-V-2_6/blob/main/README.md
 | 
						|
    msgs = [{'role': 'user', 'content': [image, args.prompt]}]
 | 
						|
 | 
						|
    # ipex_llm model needs a warmup, then inference time can be accurate
 | 
						|
    model.chat(
 | 
						|
        image=None,
 | 
						|
        msgs=msgs,
 | 
						|
        tokenizer=tokenizer,
 | 
						|
    )
 | 
						|
 | 
						|
    if args.stream:
 | 
						|
        res = model.chat(
 | 
						|
            image=None,
 | 
						|
            msgs=msgs,
 | 
						|
            tokenizer=tokenizer,
 | 
						|
            stream=True
 | 
						|
        )
 | 
						|
 | 
						|
        print('-'*20, 'Input Image', '-'*20)
 | 
						|
        print(image_path)
 | 
						|
        print('-'*20, 'Input Prompt', '-'*20)
 | 
						|
        print(args.prompt)
 | 
						|
        print('-'*20, 'Stream Chat Output', '-'*20)
 | 
						|
        for new_text in res:
 | 
						|
            print(new_text, flush=True, end='')
 | 
						|
    else:
 | 
						|
        st = time.time()
 | 
						|
        res = model.chat(
 | 
						|
            image=None,
 | 
						|
            msgs=msgs,
 | 
						|
            tokenizer=tokenizer,
 | 
						|
        )
 | 
						|
        torch.xpu.synchronize()
 | 
						|
        end = time.time()
 | 
						|
 | 
						|
        print(f'Inference time: {end-st} s')
 | 
						|
        print('-'*20, 'Input Image', '-'*20)
 | 
						|
        print(image_path)
 | 
						|
        print('-'*20, 'Input Prompt', '-'*20)
 | 
						|
        print(args.prompt)
 | 
						|
        print('-'*20, 'Chat Output', '-'*20)
 | 
						|
        print(res)
 |