Update MiniCPM_V_26 GPU example with save & load (#12127)

This commit is contained in:
Yuwen Hu 2024-09-26 17:40:22 +08:00 committed by GitHub
parent 669ff1a97b
commit f71b38a994
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 51 additions and 14 deletions

View file

@ -114,12 +114,21 @@ set SYCL_CACHE_PERSISTENT=1
```
python ./chat.py --prompt 'What is in the image?' --stream
```
- save model with low-bit optimization (if `LOWBIT_MODEL_PATH` does not exist)
```
python ./chat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --lowbit-path LOWBIT_MODEL_PATH --prompt 'What is in the image?'
```
- chat with saved model with low-bit optimization (if `LOWBIT_MODEL_PATH` exists):
```
python ./chat.py --lowbit-path LOWBIT_MODEL_PATH --prompt 'What is in the image?'
```
> [!TIP]
> For chatting in streaming mode, it is recommended to set the environment variable `PYTHONUNBUFFERED=1`.
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM-V-2_6 (e.g. `openbmb/MiniCPM-V-2_6`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-V-2_6'`.
- `--lowbit-path LOWBIT_MODEL_PATH`: argument defining the path to save/load the model with IPEX-LLM low-bit optimization. If it is an empty string, the original pretrained model specified by `REPO_ID_OR_MODEL_PATH` will be loaded. If it is an existing path, the saved model with low-bit optimization in `LOWBIT_MODEL_PATH` will be loaded. If it is a non-existing path, the original pretrained model specified by `REPO_ID_OR_MODEL_PATH` will be loaded, and the optimized low-bit model will be saved into `LOWBIT_MODEL_PATH`. It is default to be `''`, i.e. an empty string.
- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`.
- `--stream`: flag to chat in streaming mode

View file

@ -22,7 +22,7 @@ import requests
import torch
from PIL import Image
from ipex_llm.transformers import AutoModel
from transformers import AutoTokenizer
from transformers import AutoTokenizer, AutoProcessor
if __name__ == '__main__':
@ -30,6 +30,13 @@ if __name__ == '__main__':
parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-V-2_6",
help='The huggingface repo id for the openbmb/MiniCPM-V-2_6 model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument("--lowbit-path", type=str,
default="",
help="The path to the saved model folder with IPEX-LLM low-bit optimization. "
"Leave it blank if you want to load from the original model. "
"If the path does not exist, model with low-bit optimization will be saved there."
"Otherwise, model with low-bit optimization will be loaded from the path.",
)
parser.add_argument('--image-url-or-path', type=str,
default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',
help='The URL or path to the image to infer')
@ -41,22 +48,43 @@ if __name__ == '__main__':
args = parser.parse_args()
model_path = args.repo_id_or_model_path
image_path = args.image_url_or_path
lowbit_path = args.lowbit_path
if not lowbit_path or not os.path.exists(lowbit_path):
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
model = AutoModel.from_pretrained(model_path,
load_in_low_bit="sym_int4",
optimize_model=True,
trust_remote_code=True,
use_cache=True,
modules_to_not_convert=["vpm", "resampler"])
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
else:
model = AutoModel.load_low_bit(lowbit_path,
optimize_model=True,
trust_remote_code=True,
use_cache=True,
modules_to_not_convert=["vpm", "resampler"])
tokenizer = AutoTokenizer.from_pretrained(lowbit_path,
trust_remote_code=True)
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
model = AutoModel.from_pretrained(model_path,
load_in_low_bit="sym_int4",
optimize_model=True,
trust_remote_code=True,
use_cache=True,
modules_to_not_convert=["vpm", "resampler"])
model = model.half().to('xpu')
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
model.eval()
if lowbit_path and not os.path.exists(lowbit_path):
processor = AutoProcessor.from_pretrained(model_path,
trust_remote_code=True)
model.save_low_bit(lowbit_path)
tokenizer.save_pretrained(lowbit_path)
processor.save_pretrained(lowbit_path)
model = model.half().to('xpu')
query = args.prompt
if os.path.exists(image_path):
image = Image.open(image_path).convert('RGB')