* Update install_gpu.md * Update install_gpu.md * Update install_gpu.md * Update install_gpu.md * Update install_gpu.md * Update install_gpu.md * Update install_gpu.md * Update install_gpu.md * Update install_gpu.md * Small fixes --------- Co-authored-by: Yuwen Hu <yuwen.hu@intel.com>
10 KiB
BigDL-LLM Installation: GPU
PyTorch 2.1
Prerequisite
.. tabs::
.. tab:: Linux
BigDL-LLM for GPU supports on Linux with PyTorch 2.1 has been verified on:
* Intel Arc™ A-Series Graphics
* Intel Data Center GPU Flex Series
* Intel Data Center GPU Max Series
.. note::
We currently support the Ubuntu 20.04 operating system or later.
To enable BigDL-LLM for Intel GPUs with PyTorch 2.1, here're several prerequisite steps for tools installation and environment preparation:
* Step 1: Install Intel GPU Driver version >= stable_775_20_20231219. Highly recommend installing the latest version of intel-i915-dkms using apt.
.. seealso::
Please refer to our `driver installation <https://dgpu-docs.intel.com/driver/installation.html>`_ for general purpose GPU capabilities.
See `release page <https://dgpu-docs.intel.com/releases/index.html>`_ for latest version.
* Step 2: Download and install `Intel® oneAPI Base Toolkit <https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit-download.html>`_ with version 2024.0. OneMKL and DPC++ compiler are needed, others are optional.
.. seealso::
We recommend you to use `this offline package <https://registrationcenter-download.intel.com/akdlm/IRC_NAS/20f4e6a1-6b0b-4752-b8c1-e5eacba10e01/l_BaseKit_p_2024.0.0.49564_offline.sh>`_ to install oneapi.
.. tab:: Windows
BigDL-LLM on Windows supports Intel iGPU and dGPU.
To apply Intel GPU acceleration, there're several prerequisite steps for tools installation and environment preparation:
* Step 1: Install `Visual Studio 2022 <https://visualstudio.microsoft.com/downloads/>`_ Community Edition and select "Desktop development with C++" workload
* Step 2: Install or update to latest GPU driver
* Step 3: Install `Intel® oneAPI Base Toolkit <https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit-download.html>`_ 2024.0
Install BigDL-LLM
We recommend using Conda to create a python 3.9 enviroment:
.. important::
``bigdl-llm`` is tested with Python 3.9, which is recommended for best practices.
.. tabs::
.. tab:: Linux
.. code-block:: bash
conda create -n llm python=3.9
conda activate llm
pip install --pre --upgrade bigdl-llm[xpu_2.1] -f https://developer.intel.com/ipex-whl-stable-xpu
.. tab:: Windows
.. code-block:: cmd
conda create -n llm python=3.9 libuv
conda activate llm
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
PyTorch 2.0
.. note::
BigDL-LLM for GPU with PyTorch 2.0 supports Ubuntu 20.04 operating system or later.
Prerequisite
BigDL-LLM for GPU supports on Linux with PyTorch 2.0 has been verified on:
- Intel Arc™ A-Series Graphics
- Intel Data Center GPU Flex Series
- Intel Data Center GPU Max Series
To enable BigDL-LLM for Intel GPUs with PyTorch 2.0, here're several prerequisite steps for tools installation and environment preparation:
- Step 1: Install Intel GPU Driver version >= stable_775_20_20231219. Highly recommend installing the latest version of intel-i915-dkms using apt.
.. seealso:: Please refer to our `driver installation <https://dgpu-docs.intel.com/driver/installation.html>`_ for general purpose GPU capabilities. See `release page <https://dgpu-docs.intel.com/releases/index.html>`_ for latest version. - Step 2: Download and install Intel® oneAPI Base Toolkit with version 2023.2.0. OneMKL and DPC++ compiler are needed, others are optional.
.. seealso:: We recommend you to use `this offline package <https://registrationcenter-download.intel.com/akdlm/IRC_NAS/992857b9-624c-45de-9701-f6445d845359/l_BaseKit_p_2023.2.0.49397_offline.sh>`_ to install oneapi.
Install BigDL-LLM
We recommend using Conda to create a python 3.9 enviroment:
.. important::
``bigdl-llm`` is tested with Python 3.9, which is recommended for best practices.
conda create -n llm python=3.9
conda activate llm
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
Known issues
1. For Linux users, Ubuntu 22.04 and Linux kernel 6.2.0 may cause performance bad (driver version < stable_775_20_20231219).
For driver version < stable_775_20_20231219, the performance on Linux kernel 6.2.0 is worse than Linux kernel 5.19.0. You can use sudo apt update && sudo apt install -y intel-i915-dkms intel-fw-gpu to install the latest driver to solve this issue (need reboot OS).
Tips: You can use sudo apt list --installed | grep intel-i915-dkms to check your intel-i915-dkms's version, the version should be latest and >= 1.23.9.11.231003.15+i19-1.
2. For Linux users, driver installation meet unmet dependencies: intel-i915-dkms
The last apt install command of the driver installation may get following error:
The following packages have unmet dependencies:
intel-i915-dkms : Conflicts: intel-platform-cse-dkms
Conflicts: intel-platform-vsec-dkms
You can use sudo apt install -y intel-i915-dkms intel-fw-gpu to instead. As the intel-platform-cse-dkms and intel-platform-vsec-dkms are already provided by intel-i915-dkms.
3. Best known configurations
For running a LLM model with BigDL-LLM optimizations, several environment variables are recommended:
.. tabs::
.. tab:: Linux
For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series, we recommend:
.. code-block:: bash
# configures OneAPI environment variables
source /opt/intel/oneapi/setvars.sh
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
For Intel Data Center GPU Max Series, we recommend:
.. code-block:: bash
# configures OneAPI environment variables
source /opt/intel/oneapi/setvars.sh
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export ENABLE_SDP_FUSION=1
Please note that ``libtcmalloc.so`` can installed by ``conda install -c conda-forge -y gperftools=2.10``
.. tab:: Windows
Make sure you are using CMD as PowerShell is not supported:
.. code-block:: cmd
# configures OneAPI environment variables
call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat"
set SYCL_CACHE_PERSISTENT=1
Please also set the following environment variable for iGPU:
.. code-block:: cmd
set BIGDL_LLM_XMX_DISABLED=1
.. note::
For the first time that **each** model runs on **a new machine**, it may take around several minutes to compile.
4. How to install from wheel
If you encounter network issues when installing IPEX, you can also install BigDL-LLM dependencies for Intel XPU from source achieves. First you need to install the target torch/torchvision/ipex versions from downloaded wheels here before installing bigdl-llm.
.. tabs::
.. tab:: PyTorch 2.1 Linux
.. code-block:: bash
# get the wheels on Linux system for IPEX 2.1.10+xpu
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/torch-2.1.0a0%2Bcxx11.abi-cp39-cp39-linux_x86_64.whl
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/torchvision-0.16.0a0%2Bcxx11.abi-cp39-cp39-linux_x86_64.whl
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/intel_extension_for_pytorch-2.1.10%2Bxpu-cp39-cp39-linux_x86_64.whl
Then you may install directly from the wheel archives using following commands:
.. code-block:: bash
# install the packages from the wheels
pip install torch-2.1.0a0+cxx11.abi-cp39-cp39-linux_x86_64.whl
pip install torchvision-0.16.0a0+cxx11.abi-cp39-cp39-linux_x86_64.whl
pip install intel_extension_for_pytorch-2.1.10+xpu-cp39-cp39-linux_x86_64.whl
# install bigdl-llm for Intel GPU
pip install --pre --upgrade bigdl-llm[xpu_2.1]
.. tab:: PyTorch 2.1 Windows
.. code-block:: bash
# get the wheels on Windows system
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/torch-2.1.0a0%2Bcxx11.abi-cp39-cp39-win_amd64.whl
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/torchvision-0.16.0a0%2Bcxx11.abi-cp39-cp39-win_amd64.whl
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/intel_extension_for_pytorch-2.1.10%2Bxpu-cp39-cp39-win_amd64.whl
Then you may install directly from the wheel archives using following commands:
.. code-block:: cmd
# install the packages from the wheels
pip install torch-2.1.0a0+cxx11.abi-cp39-cp39-win_amd64.whl
pip install torchvision-0.16.0a0+cxx11.abi-cp39-cp39-win_amd64.whl
pip install intel_extension_for_pytorch-2.1.10+xpu-cp39-cp39-win_amd64.whl
# install bigdl-llm for Intel GPU
pip install --pre --upgrade bigdl-llm[xpu]
.. tab:: PyTorch 2.0 Linux
.. code-block:: bash
# get the wheels on Linux system for IPEX 2.0.110+xpu
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/torch-2.0.1a0%2Bcxx11.abi-cp39-cp39-linux_x86_64.whl
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/torchvision-0.15.2a0%2Bcxx11.abi-cp39-cp39-linux_x86_64.whl
wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/intel_extension_for_pytorch-2.0.110%2Bxpu-cp39-cp39-linux_x86_64.whl
Then you may install directly from the wheel archives using following commands:
.. code-block:: bash
# install the packages from the wheels
pip install torch-2.0.1a0+cxx11.abi-cp39-cp39-linux_x86_64.whl
pip install torchvision-0.15.2a0+cxx11.abi-cp39-cp39-linux_x86_64.whl
pip install intel_extension_for_pytorch-2.0.110+xpu-cp39-cp39-linux_x86_64.whl
# install bigdl-llm for Intel GPU
pip install --pre --upgrade bigdl-llm[xpu]