ipex-llm/python/llm/example/GPU
hxsz1997 a5f35757a4 Migrate langchain rag cpu example to gpu (#10450)
* add langchain rag on gpu

* add rag example in readme

* add trust_remote_code in TransformersEmbeddings.from_model_id

* add trust_remote_code in TransformersEmbeddings.from_model_id in cpu
2024-03-21 15:20:46 +08:00
..
Applications Update AutoGen README (#10255) 2024-02-28 11:34:45 +08:00
Deepspeed-AutoTP LLM: add low bit option in deepspeed autotp example (#10382) 2024-03-12 17:07:09 +08:00
HF-Transformers-AutoModels LLM: fix qwen-vl interpolation gpu abnormal results. (#10457) 2024-03-19 16:59:39 +08:00
LangChain/transformer_int4_gpu Migrate langchain rag cpu example to gpu (#10450) 2024-03-21 15:20:46 +08:00
LlamaIndex Fix llamaindex AutoTokenizer bug (#10345) 2024-03-08 16:24:50 +08:00
LLM-Finetuning LLM: fix deepspeed error of finetuning on xpu (#10484) 2024-03-21 09:46:25 +08:00
ModelScope-Models LLM: add save/load example for ModelScope (#10397) 2024-03-15 15:17:50 +08:00
Pipeline-Parallel-Inference Support running pipeline parallel inference by vertically partitioning model to different devices (#10392) 2024-03-18 13:04:45 -07:00
PyTorch-Models LLM: fix qwen-vl interpolation gpu abnormal results. (#10457) 2024-03-19 16:59:39 +08:00
Speculative-Decoding LLM: Support gpt-j in speculative decoding (#10067) 2024-02-02 14:54:55 +08:00
vLLM-Serving Add vLLM bf16 support (#10278) 2024-02-29 16:33:42 +08:00
README.md add langchain gpu example (#10277) 2024-03-05 13:33:57 +08:00

BigDL-LLM Examples on Intel GPU

This folder contains examples of running BigDL-LLM on Intel GPU:

  • Applications: running LLM applications (such as autogen) on BigDL-LLM
  • HF-Transformers-AutoModels: running any Hugging Face Transformers model on BigDL-LLM (using the standard AutoModel APIs)
  • LLM-Finetuning: running finetuning (such as LoRA, QLoRA, QA-LoRA, etc) using BigDL-LLM on Intel GPUs
  • vLLM-Serving: running vLLM serving framework on intel GPUs (with BigDL-LLM low-bit optimized models)
  • Deepspeed-AutoTP: running distributed inference using DeepSpeed AutoTP (with BigDL-LLM low-bit optimized models) on Intel GPUs
  • LangChain: running LangChain applications on BigDL-LLM
  • PyTorch-Models: running any PyTorch model on BigDL-LLM (with "one-line code change")
  • Speculative-Decoding: running any Hugging Face Transformers model with self-speculative decoding on Intel GPUs
  • ModelScope-Models: running ModelScope model with BigDL-LLM on Intel GPUs

System Support

1. Linux:

Hardware:

  • Intel Arc™ A-Series Graphics
  • Intel Data Center GPU Flex Series
  • Intel Data Center GPU Max Series

Operating System:

  • Ubuntu 20.04 or later (Ubuntu 22.04 is preferred)

2. Windows

Hardware:

  • Intel iGPU and dGPU

Operating System:

  • Windows 10/11, with or without WSL

Requirements

To apply Intel GPU acceleration, therere several steps for tools installation and environment preparation. See the GPU installation guide for mode details.