Migrate langchain rag cpu example to gpu (#10450)
* add langchain rag on gpu * add rag example in readme * add trust_remote_code in TransformersEmbeddings.from_model_id * add trust_remote_code in TransformersEmbeddings.from_model_id in cpu
This commit is contained in:
parent
c672e97239
commit
a5f35757a4
3 changed files with 113 additions and 1 deletions
|
|
@ -61,7 +61,10 @@ def main(args):
|
|||
texts = text_splitter.split_text(input_doc)
|
||||
|
||||
# create embeddings and store into vectordb
|
||||
embeddings = TransformersEmbeddings.from_model_id(model_id=model_path)
|
||||
embeddings = TransformersEmbeddings.from_model_id(
|
||||
model_id=model_path,
|
||||
model_kwargs={"trust_remote_code": True}
|
||||
)
|
||||
docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))]).as_retriever()
|
||||
|
||||
#get relavant texts
|
||||
|
|
|
|||
|
|
@ -91,3 +91,13 @@ python chat.py -m MODEL_PATH -q QUESTION
|
|||
arguments info:
|
||||
- `-m MODEL_PATH`: **required**, path to the model
|
||||
- `-q QUESTION`: question to ask. Default is `What is AI?`.
|
||||
|
||||
#### 5.1. RAG (Retrival Augmented Generation)
|
||||
|
||||
```bash
|
||||
python rag.py -m <path_to_model> [-q QUESTION] [-i INPUT_PATH]
|
||||
```
|
||||
arguments info:
|
||||
- `-m MODEL_PATH`: **required**, path to the model.
|
||||
- `-q QUESTION`: question to ask. Default is `What is BigDL?`.
|
||||
- `-i INPUT_PATH`: path to the input doc.
|
||||
99
python/llm/example/GPU/LangChain/transformer_int4_gpu/rag.py
Normal file
99
python/llm/example/GPU/LangChain/transformer_int4_gpu/rag.py
Normal file
|
|
@ -0,0 +1,99 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
# This would makes sure Python is aware there is more than one sub-package within bigdl,
|
||||
# physically located elsewhere.
|
||||
# Otherwise there would be module not found error in non-pip's setting as Python would
|
||||
# only search the first bigdl package and end up finding only one sub-package.
|
||||
|
||||
# Code is adapted from https://python.langchain.com/docs/modules/chains/additional/question_answering.html
|
||||
|
||||
import torch
|
||||
import argparse
|
||||
|
||||
from langchain.vectorstores import Chroma
|
||||
from langchain.chains.chat_vector_db.prompts import (CONDENSE_QUESTION_PROMPT,
|
||||
QA_PROMPT)
|
||||
from langchain.text_splitter import CharacterTextSplitter
|
||||
from langchain.chains.question_answering import load_qa_chain
|
||||
from langchain.callbacks.manager import CallbackManager
|
||||
|
||||
from bigdl.llm.langchain.llms import TransformersLLM
|
||||
from bigdl.llm.langchain.embeddings import TransformersEmbeddings
|
||||
|
||||
text_doc = '''
|
||||
BigDL seamlessly scales your data analytics & AI applications from laptop to cloud, with the following libraries:
|
||||
LLM: Low-bit (INT3/INT4/INT5/INT8) large language model library for Intel CPU/GPU
|
||||
Orca: Distributed Big Data & AI (TF & PyTorch) Pipeline on Spark and Ray
|
||||
Nano: Transparent Acceleration of Tensorflow & PyTorch Programs on Intel CPU/GPU
|
||||
DLlib: "Equivalent of Spark MLlib" for Deep Learning
|
||||
Chronos: Scalable Time Series Analysis using AutoML
|
||||
Friesian: End-to-End Recommendation Systems
|
||||
PPML: Secure Big Data and AI (with SGX Hardware Security)
|
||||
'''
|
||||
|
||||
def main(args):
|
||||
|
||||
input_path = args.input_path
|
||||
model_path = args.model_path
|
||||
query = args.question
|
||||
|
||||
# split texts of input doc
|
||||
if input_path is None:
|
||||
input_doc = text_doc
|
||||
else:
|
||||
with open(input_path) as f:
|
||||
input_doc = f.read()
|
||||
|
||||
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
||||
texts = text_splitter.split_text(input_doc)
|
||||
|
||||
# create embeddings and store into vectordb
|
||||
embeddings = TransformersEmbeddings.from_model_id(
|
||||
model_id=model_path,
|
||||
model_kwargs={"trust_remote_code": True},
|
||||
device_map='xpu'
|
||||
)
|
||||
docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))]).as_retriever()
|
||||
|
||||
#get relavant texts
|
||||
docs = docsearch.get_relevant_documents(query)
|
||||
|
||||
bigdl_llm = TransformersLLM.from_model_id(
|
||||
model_id=model_path,
|
||||
model_kwargs={"temperature": 0, "max_length": 1024, "trust_remote_code": True},
|
||||
device_map='xpu'
|
||||
)
|
||||
|
||||
doc_chain = load_qa_chain(
|
||||
bigdl_llm, chain_type="stuff", prompt=QA_PROMPT
|
||||
)
|
||||
|
||||
output = doc_chain.run(input_documents=docs, question=query)
|
||||
print(output)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='TransformersLLM Langchain QA over Docs Example')
|
||||
parser.add_argument('-m','--model-path', type=str, required=True,
|
||||
help='the path to transformers model')
|
||||
parser.add_argument('-i', '--input-path', type=str,
|
||||
help='the path to the input doc.')
|
||||
parser.add_argument('-q', '--question', type=str, default='What is BigDL?',
|
||||
help='qustion you want to ask.')
|
||||
args = parser.parse_args()
|
||||
|
||||
main(args)
|
||||
Loading…
Reference in a new issue