846 lines
		
	
	
	
		
			38 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			846 lines
		
	
	
	
		
			38 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
import os
 | 
						|
os.environ["OMP_NUM_THREADS"] = "4"
 | 
						|
os.environ["IPEX_LLM_LAST_LM_HEAD"] = "1"
 | 
						|
import torch
 | 
						|
import time
 | 
						|
import argparse
 | 
						|
 | 
						|
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
 | 
						|
from transformers import AutoTokenizer
 | 
						|
from intel_npu_acceleration_library.backend.factory import NNFactory
 | 
						|
from typing import Optional, Sequence, List, Union, Any, Tuple
 | 
						|
import numpy as np
 | 
						|
import math
 | 
						|
from intel_npu_acceleration_library.backend.runtime import set_contiguous, record_function
 | 
						|
from intel_npu_acceleration_library.backend.runtime import adapt_output_tensor, _model_cache
 | 
						|
from collections import deque
 | 
						|
from transformers.cache_utils import Cache
 | 
						|
from intel_npu_acceleration_library.backend.bindings import lib as backend_lib
 | 
						|
import ctypes
 | 
						|
from ipex_llm.utils.common import invalidInputError
 | 
						|
from typing import Optional, List, Generator
 | 
						|
import uuid
 | 
						|
from functools import partial
 | 
						|
import torch.nn.functional as F
 | 
						|
import torch.nn.parallel
 | 
						|
import torch.distributed as dist
 | 
						|
 | 
						|
from transformers.utils import logging
 | 
						|
logger = logging.get_logger(__name__)
 | 
						|
 | 
						|
 | 
						|
@torch.no_grad()
 | 
						|
def run_model(
 | 
						|
    x: Union[torch.Tensor, List[torch.Tensor]],
 | 
						|
    weights: List[torch.Tensor],
 | 
						|
    backend_cls: Any,
 | 
						|
    op_id: str,
 | 
						|
    replica: int = 1,
 | 
						|
) -> torch.Tensor:
 | 
						|
    """Run a factory operation. Depending on the datatype of the weights it runs a float or quantized operation.
 | 
						|
 | 
						|
    Args:
 | 
						|
        x (Union[torch.Tensor, List[torch.Tensor]]): Activation tensor(s). Its dtype must be torch.float16
 | 
						|
        weights (torch.Tensor): Weights tensor.  Its dtype can be torch.float16 or torch.int8
 | 
						|
        backend_cls (Any): Backend class to run
 | 
						|
        op_id (Optional[str], optional): Operation ID. Defaults to None.
 | 
						|
 | 
						|
    Returns:
 | 
						|
        torch.Tensor: result
 | 
						|
    """
 | 
						|
    global _model_cache
 | 
						|
    import time
 | 
						|
    t0 = time.perf_counter()
 | 
						|
 | 
						|
    # Use or not op_id depending on the class used
 | 
						|
    op_kwargs = {"op_id": op_id} if op_id else {}
 | 
						|
 | 
						|
    if not isinstance(x, (list, tuple)):
 | 
						|
        x = [x]
 | 
						|
 | 
						|
    # Reshape input
 | 
						|
    input_dtype = x[0].dtype
 | 
						|
    x_np = [set_contiguous(elem).to(torch.float16).numpy() for elem in x]
 | 
						|
    op_args = []
 | 
						|
    op_args_flatten = []
 | 
						|
    for w in weights:
 | 
						|
        if isinstance(w, tuple):  # from QuantizedLinear
 | 
						|
            op_args.append((set_contiguous(w[0]).numpy(), set_contiguous(w[1]).numpy()))
 | 
						|
            op_args_flatten.append(op_args[-1][0])
 | 
						|
            op_args_flatten.append(op_args[-1][1])
 | 
						|
        else:
 | 
						|
            op_args.append(set_contiguous(w).to(torch.float16).numpy())
 | 
						|
            op_args_flatten.append(op_args[-1])
 | 
						|
 | 
						|
    shape_dtype_signature = "_".join(
 | 
						|
        ["_".join(str(dim) for dim in t.shape) + f"_{t.dtype}" for t in x_np + op_args_flatten]
 | 
						|
    )
 | 
						|
    key = f"{backend_cls.func.__name__}_{shape_dtype_signature}"
 | 
						|
    models = _model_cache.get(key, None)
 | 
						|
 | 
						|
    input_shapes = [elem.shape for elem in x_np]
 | 
						|
    if models is None:
 | 
						|
        _model_cache[key] = deque([backend_cls(*input_shapes) for i in range(replica)])
 | 
						|
    elif len(models) < 1:
 | 
						|
        _model_cache[key].append(backend_cls(*input_shapes))
 | 
						|
    else:
 | 
						|
        _model_cache[key].rotate(1)
 | 
						|
 | 
						|
    # Get the model
 | 
						|
    model = _model_cache[key][0]
 | 
						|
 | 
						|
    with record_function(f"npu_factory_mul_{key}"):
 | 
						|
        ret = model.run(x_np, *op_args, **op_kwargs)
 | 
						|
 | 
						|
    if isinstance(ret, list):
 | 
						|
        results = [adapt_output_tensor(r, r.shape, input_dtype) for r in ret]
 | 
						|
    else:
 | 
						|
        results = adapt_output_tensor(ret, ret.shape, input_dtype)
 | 
						|
 | 
						|
    return results
 | 
						|
 | 
						|
 | 
						|
class LowBitLlamaDecoderlayer(NNFactory):
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        hidden_shape: Sequence[int],
 | 
						|
        attenion_mask_shape=None,
 | 
						|
        position_id_shape=None,
 | 
						|
        past_key_shape=None,
 | 
						|
        past_value_shape=None,
 | 
						|
        input_layernorm_shape=None,
 | 
						|
        post_layernorm_shape=None,
 | 
						|
        *,
 | 
						|
        num_heads: int,
 | 
						|
        num_key_value_heads: int,
 | 
						|
        cached_cos,
 | 
						|
        cached_sin,
 | 
						|
        mode: str = "prefill",
 | 
						|
        dtype: np.dtype = np.int8,
 | 
						|
        max_seq_len: int = 128,
 | 
						|
        profile: bool = False,
 | 
						|
        device: str = "NPU",
 | 
						|
        rms_norm_eps,
 | 
						|
        intermediate_size,
 | 
						|
        **additional_args
 | 
						|
    ):
 | 
						|
        super().__init__(profile, device)
 | 
						|
        self.max_seq_len = max_seq_len
 | 
						|
        self.intermediate_size = intermediate_size
 | 
						|
        eps = self.constant(rms_norm_eps)
 | 
						|
        
 | 
						|
        self.batch_size, self.seq_len, self.hidden_size = hidden_shape
 | 
						|
        
 | 
						|
        if mode == "decode":
 | 
						|
            invalidInputError(self.seq_len == 1, "seq_len must be 1 for decode mode")
 | 
						|
        self.num_heads = num_heads
 | 
						|
        self.num_key_value_heads = num_key_value_heads
 | 
						|
        
 | 
						|
        self.head_dim = self.hidden_size // self.num_heads
 | 
						|
        
 | 
						|
        # define input, the order self.parameter matters
 | 
						|
        input = self.parameter((self.batch_size, self.seq_len, self.hidden_size))
 | 
						|
 | 
						|
        # Self Attention
 | 
						|
        if mode == "decode":
 | 
						|
            attention_mask = self.parameter((self.batch_size, 1, 1, self.max_seq_len + 1))
 | 
						|
        else:
 | 
						|
            attention_mask = self.parameter((self.batch_size, 1, self.seq_len, self.seq_len))
 | 
						|
        
 | 
						|
        position_ids = self.parameter((self.batch_size, self.seq_len))
 | 
						|
 | 
						|
        input_layernorm_weight = self.parameter((1, self.hidden_size,))
 | 
						|
        post_attention_layernorm_weight = self.parameter((1, self.hidden_size,))
 | 
						|
 | 
						|
        if mode == "decode":
 | 
						|
            past_key = self.parameter((self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim))
 | 
						|
            past_value = self.parameter((self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim))
 | 
						|
 | 
						|
        residual = input
 | 
						|
        
 | 
						|
        input_2d = self.reshape(input, (self.batch_size * self.seq_len, self.hidden_size))
 | 
						|
 | 
						|
        # input_layernorm forward
 | 
						|
        input_2d = self.convert_to_fp32(input_2d)
 | 
						|
        variance = self.reduce_mean(self.power(input_2d, self.constant(np.array([[2]], dtype=np.float32))), -1, keep_dims=True)
 | 
						|
        input_2d = self.eltwise_div(input_2d, self.sqrt(self.eltwise_add(variance, eps)))
 | 
						|
        input_layernorm_weight = self.convert_to_fp32(input_layernorm_weight)
 | 
						|
        input_2d = self.eltwise_mul(input_layernorm_weight, input_2d)
 | 
						|
        input_2d = self.convert_to_fp16(input_2d)
 | 
						|
 | 
						|
        query_states = self.linear(input_2d, self.num_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=dtype)
 | 
						|
        key_states = self.linear(input_2d, self.num_key_value_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=dtype)
 | 
						|
        value_states = self.linear(input_2d, self.num_key_value_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=dtype)
 | 
						|
 | 
						|
        cos = self.constant(cached_cos)
 | 
						|
        cos = self.unsqueeze(cos, axis=0)
 | 
						|
 | 
						|
        sin = self.constant(cached_sin)
 | 
						|
        sin = self.unsqueeze(sin, axis=0)
 | 
						|
 | 
						|
        query_states = self.reshape(query_states, [self.batch_size, self.seq_len, self.num_heads, self.head_dim])
 | 
						|
        key_states = self.reshape(key_states, [self.batch_size, self.seq_len, self.num_key_value_heads, self.head_dim])
 | 
						|
        value_states = self.reshape(value_states, [self.batch_size, self.seq_len, self.num_key_value_heads, self.head_dim])
 | 
						|
        
 | 
						|
        query_states = self.transpose(query_states, [0, 2, 1, 3])
 | 
						|
        key_states = self.transpose(key_states, [0, 2, 1, 3])
 | 
						|
        value_states = self.transpose(value_states, [0, 2, 1, 3])
 | 
						|
        
 | 
						|
        query_states, key_states = self.apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
 | 
						|
        new_key_states = key_states
 | 
						|
        new_value_states = value_states
 | 
						|
 | 
						|
        invalidInputError(self.num_heads == self.num_key_value_heads, "num_heads must be equal to num_key_value_heads")
 | 
						|
        
 | 
						|
        if mode == "decode":
 | 
						|
            key_states = self.concat(past_key, key_states, axis=-2)
 | 
						|
            value_states = self.concat(past_value, value_states, axis=-2)
 | 
						|
 | 
						|
        attn_weight = self.matmul(query_states, key_states, False, True) / (math.sqrt(self.head_dim))
 | 
						|
        attn_weight = self.eltwise_add(attn_weight, attention_mask)
 | 
						|
        attn_weight = self.convert_to_fp32(attn_weight)
 | 
						|
        attn_weight = self.softmax(attn_weight, -1)
 | 
						|
        attn_weight = self.convert_to_fp16(attn_weight)
 | 
						|
        attn_output = self.matmul(attn_weight, value_states, False, False)
 | 
						|
 | 
						|
        attn_output = self.transpose(attn_output, [0, 2, 1, 3])
 | 
						|
        attn_output = self.reshape(attn_output, [self.batch_size, self.seq_len, self.hidden_size])
 | 
						|
 | 
						|
        attn_output = self.linear(attn_output, self.hidden_size, self.hidden_size, bias=False, wt_dtype=dtype)
 | 
						|
 | 
						|
        hidden_states = self.eltwise_add(residual, attn_output)
 | 
						|
 | 
						|
        # Fully Connected
 | 
						|
        residual = hidden_states
 | 
						|
        hidden_states = self.convert_to_fp32(hidden_states)
 | 
						|
        variance = self.reduce_mean(self.power(hidden_states, self.constant(np.array([[[2]]], dtype=np.float32))), -1, keep_dims=True)
 | 
						|
        hidden_states = self.eltwise_div(hidden_states, self.sqrt(self.eltwise_add(variance, eps)))
 | 
						|
        post_attention_layernorm_weight = self.convert_to_fp32(post_attention_layernorm_weight)
 | 
						|
        hidden_states = self.eltwise_mul(post_attention_layernorm_weight, hidden_states)
 | 
						|
        hidden_states = self.convert_to_fp16(hidden_states)
 | 
						|
 | 
						|
        # mlp
 | 
						|
        mm1 = self.linear(hidden_states, self.intermediate_size, self.hidden_size,
 | 
						|
                          bias=False, wt_dtype=dtype)
 | 
						|
        mm2 = self.linear(hidden_states, self.intermediate_size, self.hidden_size,
 | 
						|
                          bias=False, wt_dtype=dtype)  # type: ignore[attr-defined]
 | 
						|
        mm1 = self.eltwise_mul(self.swish(mm1), mm2)  # type: ignore[attr-defined]
 | 
						|
 | 
						|
        hidden_states = self.linear(mm1, self.hidden_size, self.intermediate_size, bias=False, wt_dtype=dtype)
 | 
						|
        
 | 
						|
        hidden_states = self.eltwise_add(residual, hidden_states)
 | 
						|
        hidden_states = self.convert_to_fp16(hidden_states)
 | 
						|
        
 | 
						|
        # hacking to add key, value to outputs
 | 
						|
        new_key_states = self.convert_to_fp16(new_key_states)
 | 
						|
        new_value_states = self.convert_to_fp16(new_value_states)
 | 
						|
 | 
						|
        self.compile()
 | 
						|
    
 | 
						|
    def rotate_half(self, x):
 | 
						|
        x1 = self.slice(x, [0, 0, 0, 0], [self.batch_size, self.num_heads, self.seq_len, self.head_dim//2], )
 | 
						|
        x2 = self.slice(x, [0, 0, 0, self.head_dim//2], [self.batch_size, self.num_heads, self.seq_len, self.head_dim])
 | 
						|
        return self.concat(self.negative(x2), x1, axis=-1)
 | 
						|
    
 | 
						|
    def apply_rotary_pos_emb(self, q, k, cos, sin, position_ids):
 | 
						|
        position_ids = self.squeeze(position_ids)
 | 
						|
        cos = self.gather(cos, self.convert_to_int32(position_ids), self.constant(1), 0)
 | 
						|
        sin = self.gather(sin, self.convert_to_int32(position_ids), self.constant(1), 0)
 | 
						|
        cos = self.unsqueeze(cos, [1])
 | 
						|
        sin = self.unsqueeze(sin, [1])
 | 
						|
        
 | 
						|
        q_embed = self.eltwise_add(self.eltwise_mul(q, cos), self.eltwise_mul(self.rotate_half(q), sin))
 | 
						|
        k_embed = self.eltwise_add(self.eltwise_mul(k, cos), self.eltwise_mul(self.rotate_half(k), sin))
 | 
						|
        
 | 
						|
        return q_embed, k_embed
 | 
						|
 | 
						|
 | 
						|
class LowBitLlamaMultiDecoderlayer(NNFactory):
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        hidden_shape: Sequence[int],
 | 
						|
        *shapes,
 | 
						|
        num_heads: int,
 | 
						|
        num_key_value_heads: int,
 | 
						|
        num_layers: int,
 | 
						|
        cached_cos,
 | 
						|
        cached_sin,
 | 
						|
        input_layernorm_weights,
 | 
						|
        post_attn_layernorm_weights,
 | 
						|
        mode: str = "prefill",
 | 
						|
        dtype: np.dtype = np.int8,
 | 
						|
        max_seq_len: int = 128,
 | 
						|
        profile: bool = False,
 | 
						|
        device: str = "NPU",
 | 
						|
        rms_norm_eps,
 | 
						|
        intermediate_size,
 | 
						|
        **additional_args
 | 
						|
    ):
 | 
						|
        super().__init__(profile, device)
 | 
						|
        self.max_seq_len = max_seq_len
 | 
						|
        self.intermediate_size = intermediate_size
 | 
						|
        self.dtype = dtype
 | 
						|
        self.cached_cos = cached_cos
 | 
						|
        self.cached_sin = cached_sin
 | 
						|
        self.batch_size, self.seq_len, self.hidden_size = hidden_shape
 | 
						|
        self.mode = mode
 | 
						|
        self.rms_norm_eps = rms_norm_eps
 | 
						|
 | 
						|
        cos = self.constant(self.cached_cos)
 | 
						|
        self.cos = self.unsqueeze(cos, axis=0)
 | 
						|
 | 
						|
        sin = self.constant(self.cached_sin)
 | 
						|
        self.sin = self.unsqueeze(sin, axis=0)
 | 
						|
        
 | 
						|
        if mode == "decode":
 | 
						|
            invalidInputError(self.seq_len == 1, "seq_len must be 1 for decode mode")
 | 
						|
        self.num_heads = num_heads
 | 
						|
        self.num_key_value_heads = num_key_value_heads
 | 
						|
        
 | 
						|
        self.head_dim = self.hidden_size // self.num_heads
 | 
						|
        
 | 
						|
        # define input, the order self.parameter matters
 | 
						|
        input = self.parameter((self.batch_size, self.seq_len, self.hidden_size))
 | 
						|
 | 
						|
        # Self Attention
 | 
						|
        if mode == "decode":
 | 
						|
            attention_mask = self.parameter((self.batch_size, 1, 1, self.max_seq_len + 1))
 | 
						|
        else:
 | 
						|
            attention_mask = self.parameter((self.batch_size, 1, self.seq_len, self.seq_len))
 | 
						|
 | 
						|
        position_ids = self.parameter((self.batch_size, self.seq_len))
 | 
						|
        past_keys = []
 | 
						|
        past_values = []
 | 
						|
        if mode == "decode":
 | 
						|
            for i in range(num_layers):
 | 
						|
                past_key = self.parameter((self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim))
 | 
						|
                past_value = self.parameter((self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim))
 | 
						|
                past_keys.append(past_key)
 | 
						|
                past_values.append(past_value)
 | 
						|
        else:
 | 
						|
            past_key = None
 | 
						|
            past_value = None
 | 
						|
 | 
						|
        # input_layernorm_weight = self.parameter((1, self.hidden_size,))
 | 
						|
        # post_attention_layernorm_weight = self.parameter((1, self.hidden_size,))
 | 
						|
        hidden_states = input
 | 
						|
        
 | 
						|
        curr_key_values = []
 | 
						|
        for i in range(num_layers):
 | 
						|
            hidden_states, new_key_states, new_value_states = self.build_decoder(hidden_states=hidden_states,
 | 
						|
                                                                                 attention_mask=attention_mask,
 | 
						|
                                                                                 position_ids=position_ids,
 | 
						|
                                                                                 input_layernorm_weight=input_layernorm_weights[i],
 | 
						|
                                                                                 post_attention_layernorm_weight=post_attn_layernorm_weights[i],
 | 
						|
                                                                                 past_key=past_keys[i],
 | 
						|
                                                                                 past_value=past_values[i],)
 | 
						|
            curr_key_values.append((new_key_states, new_value_states))
 | 
						|
 | 
						|
        # define outputs
 | 
						|
        hidden_states = self.convert_to_fp16(hidden_states)
 | 
						|
        
 | 
						|
        for i in range(num_layers):
 | 
						|
            new_key_states = self.convert_to_fp16(curr_key_values[i][0])
 | 
						|
            new_value_states = self.convert_to_fp16(curr_key_values[i][1])
 | 
						|
 | 
						|
        self.compile()
 | 
						|
 | 
						|
    def build_decoder(self, hidden_states, attention_mask, position_ids,
 | 
						|
                      input_layernorm_weight, post_attention_layernorm_weight,
 | 
						|
                      past_key = None,
 | 
						|
                      past_value = None):
 | 
						|
 | 
						|
        residual = hidden_states
 | 
						|
 | 
						|
        input_2d = self.reshape(hidden_states, (self.batch_size * self.seq_len, self.hidden_size))
 | 
						|
 | 
						|
        # input layernorm
 | 
						|
        input_2d = self.convert_to_fp32(input_2d)
 | 
						|
        variance = self.reduce_mean(self.power(input_2d, self.constant(np.array([[2]], dtype=np.float32))), -1, keep_dims=True)
 | 
						|
        eps = self.constant(self.rms_norm_eps)
 | 
						|
        input_2d = self.eltwise_div(input_2d, self.sqrt(self.eltwise_add(variance, eps)))
 | 
						|
        input_layernorm_weight = self.constant(input_layernorm_weight)
 | 
						|
        input_layernorm_weight = self.convert_to_fp32(input_layernorm_weight)
 | 
						|
        input_2d = self.eltwise_mul(input_layernorm_weight, input_2d)
 | 
						|
        input_2d = self.convert_to_fp16(input_2d)
 | 
						|
 | 
						|
        # attention
 | 
						|
        query_states = self.linear(input_2d, self.num_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=self.dtype)
 | 
						|
        key_states = self.linear(input_2d, self.num_key_value_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=self.dtype)
 | 
						|
        value_states = self.linear(input_2d, self.num_key_value_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=self.dtype)
 | 
						|
 | 
						|
        query_states = self.reshape(query_states, [self.batch_size, self.seq_len, self.num_heads, self.head_dim])
 | 
						|
        key_states = self.reshape(key_states, [self.batch_size, self.seq_len, self.num_key_value_heads, self.head_dim])
 | 
						|
        value_states = self.reshape(value_states, [self.batch_size, self.seq_len, self.num_key_value_heads, self.head_dim])
 | 
						|
        
 | 
						|
        query_states = self.transpose(query_states, [0, 2, 1, 3])
 | 
						|
        key_states = self.transpose(key_states, [0, 2, 1, 3])
 | 
						|
        value_states = self.transpose(value_states, [0, 2, 1, 3])
 | 
						|
        
 | 
						|
        query_states, key_states = self.apply_rotary_pos_emb(query_states, key_states, self.cos, self.sin, position_ids)
 | 
						|
        new_key_states = key_states
 | 
						|
        new_value_states = value_states
 | 
						|
        
 | 
						|
        # repeat_kv cannot be implemented because Broadcast op is needed
 | 
						|
        # key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
						|
        # value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
						|
        invalidInputError(self.num_heads == self.num_key_value_heads, "num_heads must be equal to num_key_value_heads")
 | 
						|
        
 | 
						|
        if self.mode == "decode":
 | 
						|
            key_states = self.concat(past_key, key_states, axis=-2)
 | 
						|
            value_states = self.concat(past_value, value_states, axis=-2)
 | 
						|
        
 | 
						|
        attn_weight = self.matmul(query_states, key_states, False, True) / (math.sqrt(self.head_dim))
 | 
						|
        attn_weight = self.eltwise_add(attn_weight, attention_mask)
 | 
						|
        attn_weight = self.convert_to_fp32(attn_weight)
 | 
						|
        attn_weight = self.softmax(attn_weight, -1)
 | 
						|
        attn_weight = self.convert_to_fp16(attn_weight)
 | 
						|
        attn_output = self.matmul(attn_weight, value_states, False, False)
 | 
						|
 | 
						|
        attn_output = self.transpose(attn_output, [0, 2, 1, 3])
 | 
						|
        attn_output = self.reshape(attn_output, [self.batch_size, self.seq_len, self.hidden_size])
 | 
						|
        
 | 
						|
        attn_output = self.linear(attn_output, self.hidden_size, self.hidden_size, bias=False, wt_dtype=self.dtype)
 | 
						|
 | 
						|
        hidden_states = self.eltwise_add(residual, attn_output)
 | 
						|
 | 
						|
        # Fully Connected
 | 
						|
        residual = hidden_states
 | 
						|
        hidden_states = self.convert_to_fp32(hidden_states)
 | 
						|
        variance = self.reduce_mean(self.power(hidden_states, self.constant(np.array([[[2]]], dtype=np.float32))), -1, keep_dims=True)
 | 
						|
        hidden_states = self.eltwise_div(hidden_states, self.sqrt(self.eltwise_add(variance, eps)))
 | 
						|
        post_attention_layernorm_weight = self.constant(post_attention_layernorm_weight)
 | 
						|
        post_attention_layernorm_weight = self.convert_to_fp32(post_attention_layernorm_weight)
 | 
						|
        hidden_states = self.eltwise_mul(post_attention_layernorm_weight, hidden_states)
 | 
						|
        hidden_states = self.convert_to_fp16(hidden_states)
 | 
						|
 | 
						|
        # mlp
 | 
						|
        mm1 = self.linear(hidden_states, self.intermediate_size, self.hidden_size,
 | 
						|
                          bias=False, wt_dtype=self.dtype)
 | 
						|
        mm2 = self.linear(hidden_states, self.intermediate_size, self.hidden_size,
 | 
						|
                          bias=False, wt_dtype=self.dtype)  # type: ignore[attr-defined]
 | 
						|
        mm1 = self.eltwise_mul(self.swish(mm1), mm2)  # type: ignore[attr-defined]
 | 
						|
 | 
						|
        hidden_states = self.linear(mm1, self.hidden_size, self.intermediate_size, bias=False, wt_dtype=self.dtype)
 | 
						|
        
 | 
						|
        hidden_states = self.eltwise_add(residual, hidden_states)
 | 
						|
        hidden_states = self.convert_to_fp16(hidden_states)
 | 
						|
 | 
						|
        return hidden_states, new_key_states, new_value_states
 | 
						|
    
 | 
						|
    def rotate_half(self, x):
 | 
						|
        x1 = self.slice(x, [0, 0, 0, 0], [self.batch_size, self.num_heads, self.seq_len, self.head_dim//2], )
 | 
						|
        x2 = self.slice(x, [0, 0, 0, self.head_dim//2], [self.batch_size, self.num_heads, self.seq_len, self.head_dim])
 | 
						|
        return self.concat(self.negative(x2), x1, axis=-1)
 | 
						|
    
 | 
						|
    def apply_rotary_pos_emb(self, q, k, cos, sin, position_ids):
 | 
						|
        position_ids = self.squeeze(position_ids)
 | 
						|
        cos = self.gather(cos, self.convert_to_int32(position_ids), self.constant(1), 0)
 | 
						|
        sin = self.gather(sin, self.convert_to_int32(position_ids), self.constant(1), 0)
 | 
						|
        cos = self.unsqueeze(cos, [1])
 | 
						|
        sin = self.unsqueeze(sin, [1])
 | 
						|
        
 | 
						|
        q_embed = self.eltwise_add(self.eltwise_mul(q, cos), self.eltwise_mul(self.rotate_half(q), sin))
 | 
						|
        k_embed = self.eltwise_add(self.eltwise_mul(k, cos), self.eltwise_mul(self.rotate_half(k), sin))
 | 
						|
        
 | 
						|
        return q_embed, k_embed
 | 
						|
 | 
						|
 | 
						|
class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        parameters: List[Tuple[torch.Tensor]],
 | 
						|
        input_laynorm_weights: List[torch.Tensor],
 | 
						|
        post_attn_layernorm_weights: List[torch.Tensor],
 | 
						|
        layer_indexes : List[int],
 | 
						|
        cached_cos,
 | 
						|
        cached_sin,
 | 
						|
        num_heads: int,
 | 
						|
        head_dim: int,
 | 
						|
        num_key_value_heads: int,
 | 
						|
        rms_norm_eps,
 | 
						|
        intermediate_size,
 | 
						|
        max_seq_len: int = 128,
 | 
						|
    ):
 | 
						|
        super().__init__()
 | 
						|
 | 
						|
        op_parameters = []
 | 
						|
        for w in parameters:
 | 
						|
            if isinstance(w, tuple):  # from QuantizedLinear
 | 
						|
                op_parameters.append((w[0].numpy(), w[1].numpy()))
 | 
						|
            else:
 | 
						|
                op_parameters.append(w.to(torch.float16).numpy())
 | 
						|
        self.op_parameters = op_parameters
 | 
						|
        self.op_id = str(uuid.uuid4())
 | 
						|
        # self.layer_idx = layer_idx
 | 
						|
        self.max_seq_len = max_seq_len
 | 
						|
        # self.rotary_emb = rotary_emb
 | 
						|
        if isinstance(parameters[0], tuple):  # weight, scale from QuantizedLinear
 | 
						|
            np_dtype = np.int8 if parameters[0][0].dtype == torch.int8 else np.uint8
 | 
						|
        else:  # FP16 Linear
 | 
						|
            invalidInputError(False, "Please use int4 optimization")
 | 
						|
        
 | 
						|
        self.layer_indexes = layer_indexes
 | 
						|
 | 
						|
        print("create dedcoder layer")
 | 
						|
        self.backend_cls_decode = LowBitLlamaMultiDecoderlayer([1, 1, num_heads*head_dim],
 | 
						|
                                          input_layernorm_weights=input_laynorm_weights,
 | 
						|
                                          post_attn_layernorm_weights=post_attn_layernorm_weights,
 | 
						|
                                          cached_cos=cached_cos,
 | 
						|
                                          cached_sin=cached_sin,
 | 
						|
                                          num_heads=num_heads,
 | 
						|
                                          num_key_value_heads=num_key_value_heads,
 | 
						|
                                          num_layers=len(layer_indexes),
 | 
						|
                                          max_seq_len=max_seq_len,
 | 
						|
                                          rms_norm_eps=rms_norm_eps,
 | 
						|
                                          intermediate_size=intermediate_size,
 | 
						|
                                          mode="decode",
 | 
						|
                                          dtype=np_dtype)
 | 
						|
        print("created dedcoder layer")
 | 
						|
        
 | 
						|
        self.backend_cls_decode.setWeights(3+len(layer_indexes)*2, self.op_id, *op_parameters)
 | 
						|
        print("weight setted")
 | 
						|
        backend_lib.run(self.backend_cls_decode._mm,)
 | 
						|
        print("first inference done")
 | 
						|
        self.kv_cache_c_parameter_handel = None
 | 
						|
        self.kv_cache_parameters = None
 | 
						|
        self.kv_cache_prefetched = False
 | 
						|
 | 
						|
    def forward(self,
 | 
						|
                hidden_states: torch.Tensor,
 | 
						|
                attention_mask: Optional[torch.Tensor] = None,
 | 
						|
                position_ids: Optional[torch.LongTensor] = None,
 | 
						|
                past_key_value: Optional[Cache] = None,
 | 
						|
                output_attentions: bool = False,
 | 
						|
                use_cache: bool = False,
 | 
						|
                cache_position: Optional[torch.LongTensor] = None,
 | 
						|
                **kwargs,) -> torch.Tensor:
 | 
						|
        """Torch module forward method.
 | 
						|
 | 
						|
        Args:
 | 
						|
            x (torch.Tensor): Input tensor
 | 
						|
 | 
						|
        Returns:
 | 
						|
            torch.Tensor: result
 | 
						|
        """
 | 
						|
        seq_len = hidden_states.shape[1]
 | 
						|
        backend_cls = self.backend_cls_decode
 | 
						|
 | 
						|
        pad_len = self.max_seq_len + 1 - attention_mask.size(-1)
 | 
						|
 | 
						|
        pad_mask = (0, pad_len)
 | 
						|
        padded_attention_mask = F.pad(attention_mask.to(torch.float16), pad_mask,
 | 
						|
                                value=torch.finfo(torch.float16).min)
 | 
						|
        padded_attention_mask[:,:,:,-1] = 0.0
 | 
						|
        inputs = (hidden_states.to(torch.float16),
 | 
						|
                  padded_attention_mask,
 | 
						|
                  position_ids,)
 | 
						|
 | 
						|
        if self.kv_cache_parameters is None:
 | 
						|
            self.kv_cache_parameters = []
 | 
						|
            self.kv_cache_c_parameter_handel = None
 | 
						|
            self.kv_cache_prefetched = False
 | 
						|
        else:
 | 
						|
            # the case kv cache changed
 | 
						|
            cached_prt = self.kv_cache_parameters[0].storage().data_ptr()
 | 
						|
            current_ptr = past_key_value.key_cache[self.layer_indexes[0]].storage().data_ptr()
 | 
						|
            if cached_prt != current_ptr:
 | 
						|
                self.kv_cache_parameters = []
 | 
						|
                self.kv_cache_c_parameter_handel = None
 | 
						|
                self.kv_cache_prefetched = False
 | 
						|
 | 
						|
        if len(self.kv_cache_parameters) == 0:
 | 
						|
            for idx in self.layer_indexes:
 | 
						|
                past_key = past_key_value.key_cache[idx]
 | 
						|
                past_value = past_key_value.value_cache[idx]
 | 
						|
                new_size = (past_key.size(0),
 | 
						|
                            past_key.size(1),
 | 
						|
                            self.max_seq_len,
 | 
						|
                            past_key.size(3))
 | 
						|
                past_key = past_key.as_strided(new_size, past_key.stride(), storage_offset=0)
 | 
						|
                past_value = past_value.as_strided(new_size, past_value.stride(), storage_offset=0)
 | 
						|
 | 
						|
                self.kv_cache_parameters.append(past_key)
 | 
						|
                self.kv_cache_parameters.append(past_value)
 | 
						|
            self.kv_cache_c_parameter_handel = self.backend_cls_decode.create_parameters([p.numpy() for p in self.kv_cache_parameters])
 | 
						|
 | 
						|
        x_np = [elem.to(torch.float16).numpy() for elem in inputs]
 | 
						|
 | 
						|
        with record_function(f"npu_factory"):
 | 
						|
            if not self.kv_cache_prefetched:
 | 
						|
                self.backend_cls_decode.load_wt_fn(len(inputs), self.backend_cls_decode._mm, self.kv_cache_c_parameter_handel)
 | 
						|
 | 
						|
            for idx, elem in enumerate(x_np):
 | 
						|
                self.backend_cls_decode.set_input_tensor(elem, idx)
 | 
						|
 | 
						|
            backend_lib.run(self.backend_cls_decode._mm,)
 | 
						|
            ret = self.backend_cls_decode.out
 | 
						|
            results = [adapt_output_tensor(r, r.shape, torch.float16) for r in ret]
 | 
						|
 | 
						|
        hidden_states = results[0]
 | 
						|
        key_value_states = results[1:]
 | 
						|
 | 
						|
        cache_kwargs = {"cache_position": cache_position, "max_seq_len":self.max_seq_len}
 | 
						|
        for i in range(len(self.layer_indexes)):
 | 
						|
            key_states, value_states = past_key_value.update(key_value_states[2*i],
 | 
						|
                                                             key_value_states[2*i+1],
 | 
						|
                                                             self.layer_indexes[i], cache_kwargs)
 | 
						|
        
 | 
						|
        self.backend_cls_decode.load_wt_fn(len(inputs), self.backend_cls_decode._mm, self.kv_cache_c_parameter_handel)
 | 
						|
        self.kv_cache_prefetched = True
 | 
						|
        outputs = (hidden_states,)
 | 
						|
        outputs += (past_key_value,)
 | 
						|
 | 
						|
        return outputs
 | 
						|
 | 
						|
 | 
						|
class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        parameters: List[torch.Tensor],
 | 
						|
        cached_cos,
 | 
						|
        cached_sin,
 | 
						|
        layer_norm_0,
 | 
						|
        layer_norm_1,
 | 
						|
        num_heads: int,
 | 
						|
        num_key_value_heads: int,
 | 
						|
        layer_idx: int,
 | 
						|
        rms_norm_eps,
 | 
						|
        intermediate_size,
 | 
						|
        max_seq_len: int = 128,
 | 
						|
    ):
 | 
						|
        super().__init__()
 | 
						|
        self.op_parameters = parameters
 | 
						|
        self.op_id = str(uuid.uuid4())
 | 
						|
        self.layer_idx = layer_idx
 | 
						|
        self.max_seq_len = max_seq_len
 | 
						|
        # self.rotary_emb = rotary_emb
 | 
						|
        if isinstance(parameters[0], tuple):  # weight, scale from QuantizedLinear
 | 
						|
            np_dtype = np.int8 if parameters[0][0].dtype == torch.int8 else np.uint8
 | 
						|
        else:  # FP16 Linear
 | 
						|
            np_dtype = np.float16
 | 
						|
 | 
						|
        self.backend_cls_prefill = partial(LowBitLlamaDecoderlayer,
 | 
						|
                                           cached_cos=cached_cos,
 | 
						|
                                           cached_sin=cached_sin,
 | 
						|
                                           num_heads=num_heads,
 | 
						|
                                           num_key_value_heads=num_key_value_heads,
 | 
						|
                                           max_seq_len=max_seq_len,
 | 
						|
                                           rms_norm_eps=rms_norm_eps,
 | 
						|
                                           intermediate_size=intermediate_size,
 | 
						|
                                           mode="prefill",
 | 
						|
                                           dtype=np_dtype)
 | 
						|
        self.backend_cls_decode = partial(LowBitLlamaDecoderlayer,
 | 
						|
                                          cached_cos=cached_cos,
 | 
						|
                                          cached_sin=cached_sin,
 | 
						|
                                          num_heads=num_heads,
 | 
						|
                                          num_key_value_heads=num_key_value_heads,
 | 
						|
                                          max_seq_len=max_seq_len,
 | 
						|
                                          rms_norm_eps=rms_norm_eps,
 | 
						|
                                          intermediate_size=intermediate_size,
 | 
						|
                                          mode="decode",
 | 
						|
                                          dtype=np_dtype)
 | 
						|
        self.layer_norm_0 = layer_norm_0
 | 
						|
        self.layer_norm_1 = layer_norm_1
 | 
						|
        
 | 
						|
 | 
						|
    def forward(self,
 | 
						|
                hidden_states: torch.Tensor,
 | 
						|
                attention_mask: Optional[torch.Tensor] = None,
 | 
						|
                position_ids: Optional[torch.LongTensor] = None,
 | 
						|
                past_key_value: Optional[Cache] = None,
 | 
						|
                output_attentions: bool = False,
 | 
						|
                use_cache: bool = False,
 | 
						|
                cache_position: Optional[torch.LongTensor] = None,
 | 
						|
                **kwargs,) -> torch.Tensor:
 | 
						|
        seq_len = hidden_states.shape[1]
 | 
						|
        # cos, sin = self.rotary_emb(hidden_states, position_ids)
 | 
						|
        if seq_len == 1:
 | 
						|
            backend_cls = self.backend_cls_decode
 | 
						|
            past_key = past_key_value.key_cache[self.layer_idx]
 | 
						|
            past_value = past_key_value.value_cache[self.layer_idx]
 | 
						|
 | 
						|
            new_size = (past_key.size(0),
 | 
						|
                        past_key.size(1),
 | 
						|
                        self.max_seq_len,
 | 
						|
                        past_key.size(3))
 | 
						|
            past_key = past_key.as_strided(new_size, past_key.stride(), storage_offset=0)
 | 
						|
            past_value = past_value.as_strided(new_size, past_value.stride(), storage_offset=0)
 | 
						|
 | 
						|
            pad_len = self.max_seq_len + 1 - attention_mask.size(-1)
 | 
						|
 | 
						|
            pad_mask = (0, pad_len)
 | 
						|
            padded_attention_mask = F.pad(attention_mask.to(torch.float16), pad_mask,
 | 
						|
                                    value=torch.finfo(torch.float16).min)
 | 
						|
            padded_attention_mask[:,:,:,-1] = 0.0
 | 
						|
            inputs = (hidden_states.to(torch.float16),
 | 
						|
                      padded_attention_mask,
 | 
						|
                      position_ids,)
 | 
						|
 | 
						|
            inputs += (self.layer_norm_0, self.layer_norm_1)
 | 
						|
 | 
						|
            inputs += (past_key, past_value)
 | 
						|
            hidden_states, new_key, new_value = run_model(inputs, self.op_parameters, backend_cls, self.op_id, replica=4)
 | 
						|
            cache_kwargs = {"cache_position": cache_position, "max_seq_len":self.max_seq_len}
 | 
						|
            key_states, value_states = past_key_value.update(new_key, new_value, self.layer_idx, cache_kwargs)
 | 
						|
        else:
 | 
						|
            backend_cls = self.backend_cls_prefill
 | 
						|
            inputs = (hidden_states.to(torch.float16), attention_mask, position_ids)
 | 
						|
            inputs += (self.layer_norm_0, self.layer_norm_1)
 | 
						|
            hidden_states, past_key, past_value = run_model(inputs, self.op_parameters, backend_cls, self.op_id, replica=1)
 | 
						|
            cache_kwargs = {"cache_position": cache_position, "max_seq_len":self.max_seq_len}
 | 
						|
            key_states, value_states = past_key_value.update(past_key, past_value, self.layer_idx, cache_kwargs)
 | 
						|
 | 
						|
        outputs = (hidden_states,)
 | 
						|
        outputs += (past_key_value,)
 | 
						|
        return outputs
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for npu model')
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
 | 
						|
                        help='The huggingface repo id for the Llama2 model to be downloaded'
 | 
						|
                             ', or the path to the huggingface checkpoint folder')
 | 
						|
    parser.add_argument('--prompt', type=str, default="Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun",
 | 
						|
                        help='Prompt to infer')
 | 
						|
    parser.add_argument('--n-predict', type=int, default=32,
 | 
						|
                        help='Max tokens to predict')
 | 
						|
 | 
						|
    args = parser.parse_args()
 | 
						|
    model_path = args.repo_id_or_model_path
 | 
						|
 | 
						|
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
 | 
						|
    pipeline = True # default
 | 
						|
    max_seq_len = 1024 # default
 | 
						|
    if pipeline:
 | 
						|
        os.environ['MASTER_ADDR'] = '127.0.0.1'
 | 
						|
        os.environ['MASTER_PORT'] = '29501'
 | 
						|
 | 
						|
        dist.init_process_group()
 | 
						|
        my_rank = dist.get_rank()
 | 
						|
        my_size = dist.get_world_size()
 | 
						|
        logger.info(f"rank: {my_rank}, size: {my_size}")
 | 
						|
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, attn_implementation="eager",
 | 
						|
                                                     load_in_low_bit="sym_int4", pipeline_parallel_stages=2)
 | 
						|
 | 
						|
        if my_rank == 0:
 | 
						|
            print(model)
 | 
						|
        dist.barrier()
 | 
						|
 | 
						|
        if my_rank == 1:
 | 
						|
            print(model)
 | 
						|
    else:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, attn_implementation="eager",
 | 
						|
                                                     load_in_low_bit="sym_int4")
 | 
						|
 | 
						|
    if pipeline:
 | 
						|
        layer_start = model.layer_start
 | 
						|
        layer_end = model.layer_end
 | 
						|
        num_layers = model.num_layers
 | 
						|
    else:
 | 
						|
        layer_start = 0
 | 
						|
        layer_end = 32
 | 
						|
        num_layers = 32
 | 
						|
    num_heads = model.model.layers[layer_start].self_attn.num_heads
 | 
						|
    num_key_value_heads = model.model.layers[layer_start].self_attn.num_key_value_heads
 | 
						|
    head_dim = model.model.layers[layer_start].self_attn.head_dim
 | 
						|
    rms_norm_eps = model.config.rms_norm_eps
 | 
						|
    intermediate_size = model.config.intermediate_size
 | 
						|
    deocderlayers = []
 | 
						|
    layer_weights = []
 | 
						|
    input_layer_norm_weights = []
 | 
						|
    post_attn_layernorm_weights = []
 | 
						|
    layer_indexs = range(layer_start, layer_end)
 | 
						|
    for layer_idx in layer_indexs:
 | 
						|
        curr_layer = model.model.layers[layer_idx]
 | 
						|
        attn_layer = curr_layer.self_attn
 | 
						|
        mlp_layer = curr_layer.mlp
 | 
						|
 | 
						|
        weights = [
 | 
						|
            # model.model.layers[i].input_layernorm.weight.to(torch.float16),
 | 
						|
            (attn_layer.q_proj.weight, attn_layer.q_proj.scale),
 | 
						|
            (attn_layer.k_proj.weight, attn_layer.k_proj.scale),
 | 
						|
            (attn_layer.v_proj.weight, attn_layer.v_proj.scale),
 | 
						|
            (attn_layer.o_proj.weight, attn_layer.o_proj.scale),
 | 
						|
            # model.model.layers[i].post_attention_layernorm.weight.to(torch.float16),
 | 
						|
            (mlp_layer.gate_proj.weight, mlp_layer.gate_proj.scale),
 | 
						|
            (mlp_layer.up_proj.weight, mlp_layer.up_proj.scale),
 | 
						|
            (mlp_layer.down_proj.weight, mlp_layer.down_proj.scale)]
 | 
						|
 | 
						|
        cached_cos = curr_layer.self_attn.rotary_emb.cos_cached.to(torch.float16)
 | 
						|
        cached_sin = curr_layer.self_attn.rotary_emb.sin_cached.to(torch.float16)
 | 
						|
 | 
						|
        layer_norm_0 = curr_layer.input_layernorm.weight.to(torch.float16)
 | 
						|
        layer_norm_1 = curr_layer.post_attention_layernorm.weight.to(torch.float16)
 | 
						|
 | 
						|
        new_decoderlayer = FusedLlamaLowBitDecoderlayer(weights,
 | 
						|
                                            num_heads=num_heads,
 | 
						|
                                            num_key_value_heads=num_key_value_heads,
 | 
						|
                                            cached_cos=cached_cos,
 | 
						|
                                            cached_sin=cached_sin,
 | 
						|
                                            # rotary_emb=model.model.layers[i].self_attn.rotary_emb,
 | 
						|
                                            layer_norm_0=layer_norm_0,
 | 
						|
                                            layer_norm_1=layer_norm_1,
 | 
						|
                                            layer_idx=layer_idx,
 | 
						|
                                            rms_norm_eps=rms_norm_eps,
 | 
						|
                                            intermediate_size=intermediate_size,
 | 
						|
                                            max_seq_len=max_seq_len)
 | 
						|
        
 | 
						|
        layer_weights.extend(weights)
 | 
						|
        input_layer_norm_weights.append(layer_norm_0)
 | 
						|
        post_attn_layernorm_weights.append(layer_norm_1)
 | 
						|
        model.model.layers[layer_idx] = new_decoderlayer
 | 
						|
 | 
						|
    multi_decoder = FusedLlamaLowBitMultiDecoderlayer(
 | 
						|
        parameters=layer_weights,
 | 
						|
        input_laynorm_weights=input_layer_norm_weights,
 | 
						|
        post_attn_layernorm_weights=post_attn_layernorm_weights,
 | 
						|
        layer_indexes=layer_indexs,
 | 
						|
        cached_cos=cached_cos,
 | 
						|
        cached_sin=cached_sin,
 | 
						|
        num_heads=num_heads,
 | 
						|
        head_dim=head_dim,
 | 
						|
        num_key_value_heads=num_key_value_heads,
 | 
						|
        rms_norm_eps=rms_norm_eps,
 | 
						|
        intermediate_size=intermediate_size,
 | 
						|
        max_seq_len=max_seq_len,
 | 
						|
    )
 | 
						|
 | 
						|
    model.model.multi_decoder = multi_decoder
 | 
						|
    print(model)
 | 
						|
 | 
						|
    with torch.inference_mode():
 | 
						|
        input_ids = tokenizer.encode(args.prompt, return_tensors="pt")
 | 
						|
        print("finish to load")
 | 
						|
        print('input length:', len(input_ids[0]))
 | 
						|
        for i in range(3):
 | 
						|
            st = time.time()
 | 
						|
            output = model.generate(input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict)
 | 
						|
            end = time.time()
 | 
						|
            if my_rank == 0:
 | 
						|
                print(f"First token cost: {model.first_token_time} s, rest tokens cost average: {model.rest_cost_mean} s")
 | 
						|
                print(f'Inference time: {end-st} s')
 | 
						|
                output_str = tokenizer.decode(output[0], skip_special_tokens=False)
 | 
						|
                print('-'*20, 'Prompt', '-'*20)
 | 
						|
                print(args.prompt)
 | 
						|
                print('-'*20, 'Output', '-'*20)
 | 
						|
                print(output_str)
 |