Add experimental support of fused decoder layer for llama2 (#11768)

This commit is contained in:
binbin Deng 2024-08-13 14:41:36 +08:00 committed by GitHub
parent c28b3389e6
commit 23d3acdc77
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
7 changed files with 1850 additions and 14 deletions

View file

@ -23,7 +23,7 @@ Go to https://www.intel.com/content/www/us/en/download/794734/intel-npu-driver-w
Then go to **Device Manager**, find **Neural Processors** -> **Intel(R) AI Boost**.
Right click and select **Update Driver**. And then manually select the folder unzipped from the driver.
## Example: Predict Tokens using `generate()` API
## Example 1: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a Llama2 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel NPUs.
### 1. Install
#### 1.1 Installation on Windows
@ -81,3 +81,62 @@ Inference time: xxxx s
--------------------------------------------------------------------------------
done
```
## Example 2: Predict Tokens using `generate()` API using multi processes
In the example [llama2.py](./llama2.py), we show an experimental support for a Llama2 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimization and fused decoderlayer optimization on Intel NPUs.
### 1. Install
#### 1.1 Installation on Windows
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.10
conda activate llm
# install ipex-llm with 'all' option
pip install --pre --upgrade ipex-llm[all]
pip install --pre --upgrade bigdl-core-npu
pip install transformers==4.40
```
### 2. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 2.1 Configurations for Windows
> [!NOTE]
> For optimal performance, we recommend running code in `conhost` rather than Windows Terminal:
> - Press <kbd>Win</kbd>+<kbd>R</kbd> and input `conhost`, then press Enter to launch `conhost`.
> - Run following command to use conda in `conhost`. Replace `<your conda install location>` with your conda install location.
> ```
> call <your conda install location>\Scripts\activate
> ```
**Following envrionment variables are required**:
```cmd
set BIGDL_USE_NPU=1
```
### 3. Running examples
```
torchrun --standalone --nnodes=1 --nproc-per-node=2  llama2.py
```
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama2 model (i.e. `meta-llama/Llama-2-7b-chat-hf`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Llama-2-7b-chat-hf'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
#### Sample Output
#### [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
```log
First token cost: xxxx s, rest tokens cost average: xxxx s
Inference time: xxxx s
-------------------- Prompt --------------------
Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun
-------------------- Output --------------------
<s> Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun and exciting experiences.
One day, she decided to go on a journey to find a magical land that was said to be full of wonders
```

View file

@ -0,0 +1,846 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
os.environ["OMP_NUM_THREADS"] = "4"
os.environ["IPEX_LLM_LAST_LM_HEAD"] = "1"
import torch
import time
import argparse
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
from transformers import AutoTokenizer
from intel_npu_acceleration_library.backend.factory import NNFactory
from typing import Optional, Sequence, List, Union, Any, Tuple
import numpy as np
import math
from intel_npu_acceleration_library.backend.runtime import set_contiguous, record_function
from intel_npu_acceleration_library.backend.runtime import adapt_output_tensor, _model_cache
from collections import deque
from transformers.cache_utils import Cache
from intel_npu_acceleration_library.backend.bindings import lib as backend_lib
import ctypes
from ipex_llm.utils.common import invalidInputError
from typing import Optional, List, Generator
import uuid
from functools import partial
import torch.nn.functional as F
import torch.nn.parallel
import torch.distributed as dist
from transformers.utils import logging
logger = logging.get_logger(__name__)
@torch.no_grad()
def run_model(
x: Union[torch.Tensor, List[torch.Tensor]],
weights: List[torch.Tensor],
backend_cls: Any,
op_id: str,
replica: int = 1,
) -> torch.Tensor:
"""Run a factory operation. Depending on the datatype of the weights it runs a float or quantized operation.
Args:
x (Union[torch.Tensor, List[torch.Tensor]]): Activation tensor(s). Its dtype must be torch.float16
weights (torch.Tensor): Weights tensor. Its dtype can be torch.float16 or torch.int8
backend_cls (Any): Backend class to run
op_id (Optional[str], optional): Operation ID. Defaults to None.
Returns:
torch.Tensor: result
"""
global _model_cache
import time
t0 = time.perf_counter()
# Use or not op_id depending on the class used
op_kwargs = {"op_id": op_id} if op_id else {}
if not isinstance(x, (list, tuple)):
x = [x]
# Reshape input
input_dtype = x[0].dtype
x_np = [set_contiguous(elem).to(torch.float16).numpy() for elem in x]
op_args = []
op_args_flatten = []
for w in weights:
if isinstance(w, tuple): # from QuantizedLinear
op_args.append((set_contiguous(w[0]).numpy(), set_contiguous(w[1]).numpy()))
op_args_flatten.append(op_args[-1][0])
op_args_flatten.append(op_args[-1][1])
else:
op_args.append(set_contiguous(w).to(torch.float16).numpy())
op_args_flatten.append(op_args[-1])
shape_dtype_signature = "_".join(
["_".join(str(dim) for dim in t.shape) + f"_{t.dtype}" for t in x_np + op_args_flatten]
)
key = f"{backend_cls.func.__name__}_{shape_dtype_signature}"
models = _model_cache.get(key, None)
input_shapes = [elem.shape for elem in x_np]
if models is None:
_model_cache[key] = deque([backend_cls(*input_shapes) for i in range(replica)])
elif len(models) < 1:
_model_cache[key].append(backend_cls(*input_shapes))
else:
_model_cache[key].rotate(1)
# Get the model
model = _model_cache[key][0]
with record_function(f"npu_factory_mul_{key}"):
ret = model.run(x_np, *op_args, **op_kwargs)
if isinstance(ret, list):
results = [adapt_output_tensor(r, r.shape, input_dtype) for r in ret]
else:
results = adapt_output_tensor(ret, ret.shape, input_dtype)
return results
class LowBitLlamaDecoderlayer(NNFactory):
def __init__(
self,
hidden_shape: Sequence[int],
attenion_mask_shape=None,
position_id_shape=None,
past_key_shape=None,
past_value_shape=None,
input_layernorm_shape=None,
post_layernorm_shape=None,
*,
num_heads: int,
num_key_value_heads: int,
cached_cos,
cached_sin,
mode: str = "prefill",
dtype: np.dtype = np.int8,
max_seq_len: int = 128,
profile: bool = False,
device: str = "NPU",
rms_norm_eps,
intermediate_size,
**additional_args
):
super().__init__(profile, device)
self.max_seq_len = max_seq_len
self.intermediate_size = intermediate_size
eps = self.constant(rms_norm_eps)
self.batch_size, self.seq_len, self.hidden_size = hidden_shape
if mode == "decode":
invalidInputError(self.seq_len == 1, "seq_len must be 1 for decode mode")
self.num_heads = num_heads
self.num_key_value_heads = num_key_value_heads
self.head_dim = self.hidden_size // self.num_heads
# define input, the order self.parameter matters
input = self.parameter((self.batch_size, self.seq_len, self.hidden_size))
# Self Attention
if mode == "decode":
attention_mask = self.parameter((self.batch_size, 1, 1, self.max_seq_len + 1))
else:
attention_mask = self.parameter((self.batch_size, 1, self.seq_len, self.seq_len))
position_ids = self.parameter((self.batch_size, self.seq_len))
input_layernorm_weight = self.parameter((1, self.hidden_size,))
post_attention_layernorm_weight = self.parameter((1, self.hidden_size,))
if mode == "decode":
past_key = self.parameter((self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim))
past_value = self.parameter((self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim))
residual = input
input_2d = self.reshape(input, (self.batch_size * self.seq_len, self.hidden_size))
# input_layernorm forward
input_2d = self.convert_to_fp32(input_2d)
variance = self.reduce_mean(self.power(input_2d, self.constant(np.array([[2]], dtype=np.float32))), -1, keep_dims=True)
input_2d = self.eltwise_div(input_2d, self.sqrt(self.eltwise_add(variance, eps)))
input_layernorm_weight = self.convert_to_fp32(input_layernorm_weight)
input_2d = self.eltwise_mul(input_layernorm_weight, input_2d)
input_2d = self.convert_to_fp16(input_2d)
query_states = self.linear(input_2d, self.num_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=dtype)
key_states = self.linear(input_2d, self.num_key_value_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=dtype)
value_states = self.linear(input_2d, self.num_key_value_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=dtype)
cos = self.constant(cached_cos)
cos = self.unsqueeze(cos, axis=0)
sin = self.constant(cached_sin)
sin = self.unsqueeze(sin, axis=0)
query_states = self.reshape(query_states, [self.batch_size, self.seq_len, self.num_heads, self.head_dim])
key_states = self.reshape(key_states, [self.batch_size, self.seq_len, self.num_key_value_heads, self.head_dim])
value_states = self.reshape(value_states, [self.batch_size, self.seq_len, self.num_key_value_heads, self.head_dim])
query_states = self.transpose(query_states, [0, 2, 1, 3])
key_states = self.transpose(key_states, [0, 2, 1, 3])
value_states = self.transpose(value_states, [0, 2, 1, 3])
query_states, key_states = self.apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
new_key_states = key_states
new_value_states = value_states
invalidInputError(self.num_heads == self.num_key_value_heads, "num_heads must be equal to num_key_value_heads")
if mode == "decode":
key_states = self.concat(past_key, key_states, axis=-2)
value_states = self.concat(past_value, value_states, axis=-2)
attn_weight = self.matmul(query_states, key_states, False, True) / (math.sqrt(self.head_dim))
attn_weight = self.eltwise_add(attn_weight, attention_mask)
attn_weight = self.convert_to_fp32(attn_weight)
attn_weight = self.softmax(attn_weight, -1)
attn_weight = self.convert_to_fp16(attn_weight)
attn_output = self.matmul(attn_weight, value_states, False, False)
attn_output = self.transpose(attn_output, [0, 2, 1, 3])
attn_output = self.reshape(attn_output, [self.batch_size, self.seq_len, self.hidden_size])
attn_output = self.linear(attn_output, self.hidden_size, self.hidden_size, bias=False, wt_dtype=dtype)
hidden_states = self.eltwise_add(residual, attn_output)
# Fully Connected
residual = hidden_states
hidden_states = self.convert_to_fp32(hidden_states)
variance = self.reduce_mean(self.power(hidden_states, self.constant(np.array([[[2]]], dtype=np.float32))), -1, keep_dims=True)
hidden_states = self.eltwise_div(hidden_states, self.sqrt(self.eltwise_add(variance, eps)))
post_attention_layernorm_weight = self.convert_to_fp32(post_attention_layernorm_weight)
hidden_states = self.eltwise_mul(post_attention_layernorm_weight, hidden_states)
hidden_states = self.convert_to_fp16(hidden_states)
# mlp
mm1 = self.linear(hidden_states, self.intermediate_size, self.hidden_size,
bias=False, wt_dtype=dtype)
mm2 = self.linear(hidden_states, self.intermediate_size, self.hidden_size,
bias=False, wt_dtype=dtype) # type: ignore[attr-defined]
mm1 = self.eltwise_mul(self.swish(mm1), mm2) # type: ignore[attr-defined]
hidden_states = self.linear(mm1, self.hidden_size, self.intermediate_size, bias=False, wt_dtype=dtype)
hidden_states = self.eltwise_add(residual, hidden_states)
hidden_states = self.convert_to_fp16(hidden_states)
# hacking to add key, value to outputs
new_key_states = self.convert_to_fp16(new_key_states)
new_value_states = self.convert_to_fp16(new_value_states)
self.compile()
def rotate_half(self, x):
x1 = self.slice(x, [0, 0, 0, 0], [self.batch_size, self.num_heads, self.seq_len, self.head_dim//2], )
x2 = self.slice(x, [0, 0, 0, self.head_dim//2], [self.batch_size, self.num_heads, self.seq_len, self.head_dim])
return self.concat(self.negative(x2), x1, axis=-1)
def apply_rotary_pos_emb(self, q, k, cos, sin, position_ids):
position_ids = self.squeeze(position_ids)
cos = self.gather(cos, self.convert_to_int32(position_ids), self.constant(1), 0)
sin = self.gather(sin, self.convert_to_int32(position_ids), self.constant(1), 0)
cos = self.unsqueeze(cos, [1])
sin = self.unsqueeze(sin, [1])
q_embed = self.eltwise_add(self.eltwise_mul(q, cos), self.eltwise_mul(self.rotate_half(q), sin))
k_embed = self.eltwise_add(self.eltwise_mul(k, cos), self.eltwise_mul(self.rotate_half(k), sin))
return q_embed, k_embed
class LowBitLlamaMultiDecoderlayer(NNFactory):
def __init__(
self,
hidden_shape: Sequence[int],
*shapes,
num_heads: int,
num_key_value_heads: int,
num_layers: int,
cached_cos,
cached_sin,
input_layernorm_weights,
post_attn_layernorm_weights,
mode: str = "prefill",
dtype: np.dtype = np.int8,
max_seq_len: int = 128,
profile: bool = False,
device: str = "NPU",
rms_norm_eps,
intermediate_size,
**additional_args
):
super().__init__(profile, device)
self.max_seq_len = max_seq_len
self.intermediate_size = intermediate_size
self.dtype = dtype
self.cached_cos = cached_cos
self.cached_sin = cached_sin
self.batch_size, self.seq_len, self.hidden_size = hidden_shape
self.mode = mode
self.rms_norm_eps = rms_norm_eps
cos = self.constant(self.cached_cos)
self.cos = self.unsqueeze(cos, axis=0)
sin = self.constant(self.cached_sin)
self.sin = self.unsqueeze(sin, axis=0)
if mode == "decode":
invalidInputError(self.seq_len == 1, "seq_len must be 1 for decode mode")
self.num_heads = num_heads
self.num_key_value_heads = num_key_value_heads
self.head_dim = self.hidden_size // self.num_heads
# define input, the order self.parameter matters
input = self.parameter((self.batch_size, self.seq_len, self.hidden_size))
# Self Attention
if mode == "decode":
attention_mask = self.parameter((self.batch_size, 1, 1, self.max_seq_len + 1))
else:
attention_mask = self.parameter((self.batch_size, 1, self.seq_len, self.seq_len))
position_ids = self.parameter((self.batch_size, self.seq_len))
past_keys = []
past_values = []
if mode == "decode":
for i in range(num_layers):
past_key = self.parameter((self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim))
past_value = self.parameter((self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim))
past_keys.append(past_key)
past_values.append(past_value)
else:
past_key = None
past_value = None
# input_layernorm_weight = self.parameter((1, self.hidden_size,))
# post_attention_layernorm_weight = self.parameter((1, self.hidden_size,))
hidden_states = input
curr_key_values = []
for i in range(num_layers):
hidden_states, new_key_states, new_value_states = self.build_decoder(hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
input_layernorm_weight=input_layernorm_weights[i],
post_attention_layernorm_weight=post_attn_layernorm_weights[i],
past_key=past_keys[i],
past_value=past_values[i],)
curr_key_values.append((new_key_states, new_value_states))
# define outputs
hidden_states = self.convert_to_fp16(hidden_states)
for i in range(num_layers):
new_key_states = self.convert_to_fp16(curr_key_values[i][0])
new_value_states = self.convert_to_fp16(curr_key_values[i][1])
self.compile()
def build_decoder(self, hidden_states, attention_mask, position_ids,
input_layernorm_weight, post_attention_layernorm_weight,
past_key = None,
past_value = None):
residual = hidden_states
input_2d = self.reshape(hidden_states, (self.batch_size * self.seq_len, self.hidden_size))
# input layernorm
input_2d = self.convert_to_fp32(input_2d)
variance = self.reduce_mean(self.power(input_2d, self.constant(np.array([[2]], dtype=np.float32))), -1, keep_dims=True)
eps = self.constant(self.rms_norm_eps)
input_2d = self.eltwise_div(input_2d, self.sqrt(self.eltwise_add(variance, eps)))
input_layernorm_weight = self.constant(input_layernorm_weight)
input_layernorm_weight = self.convert_to_fp32(input_layernorm_weight)
input_2d = self.eltwise_mul(input_layernorm_weight, input_2d)
input_2d = self.convert_to_fp16(input_2d)
# attention
query_states = self.linear(input_2d, self.num_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=self.dtype)
key_states = self.linear(input_2d, self.num_key_value_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=self.dtype)
value_states = self.linear(input_2d, self.num_key_value_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=self.dtype)
query_states = self.reshape(query_states, [self.batch_size, self.seq_len, self.num_heads, self.head_dim])
key_states = self.reshape(key_states, [self.batch_size, self.seq_len, self.num_key_value_heads, self.head_dim])
value_states = self.reshape(value_states, [self.batch_size, self.seq_len, self.num_key_value_heads, self.head_dim])
query_states = self.transpose(query_states, [0, 2, 1, 3])
key_states = self.transpose(key_states, [0, 2, 1, 3])
value_states = self.transpose(value_states, [0, 2, 1, 3])
query_states, key_states = self.apply_rotary_pos_emb(query_states, key_states, self.cos, self.sin, position_ids)
new_key_states = key_states
new_value_states = value_states
# repeat_kv cannot be implemented because Broadcast op is needed
# key_states = repeat_kv(key_states, self.num_key_value_groups)
# value_states = repeat_kv(value_states, self.num_key_value_groups)
invalidInputError(self.num_heads == self.num_key_value_heads, "num_heads must be equal to num_key_value_heads")
if self.mode == "decode":
key_states = self.concat(past_key, key_states, axis=-2)
value_states = self.concat(past_value, value_states, axis=-2)
attn_weight = self.matmul(query_states, key_states, False, True) / (math.sqrt(self.head_dim))
attn_weight = self.eltwise_add(attn_weight, attention_mask)
attn_weight = self.convert_to_fp32(attn_weight)
attn_weight = self.softmax(attn_weight, -1)
attn_weight = self.convert_to_fp16(attn_weight)
attn_output = self.matmul(attn_weight, value_states, False, False)
attn_output = self.transpose(attn_output, [0, 2, 1, 3])
attn_output = self.reshape(attn_output, [self.batch_size, self.seq_len, self.hidden_size])
attn_output = self.linear(attn_output, self.hidden_size, self.hidden_size, bias=False, wt_dtype=self.dtype)
hidden_states = self.eltwise_add(residual, attn_output)
# Fully Connected
residual = hidden_states
hidden_states = self.convert_to_fp32(hidden_states)
variance = self.reduce_mean(self.power(hidden_states, self.constant(np.array([[[2]]], dtype=np.float32))), -1, keep_dims=True)
hidden_states = self.eltwise_div(hidden_states, self.sqrt(self.eltwise_add(variance, eps)))
post_attention_layernorm_weight = self.constant(post_attention_layernorm_weight)
post_attention_layernorm_weight = self.convert_to_fp32(post_attention_layernorm_weight)
hidden_states = self.eltwise_mul(post_attention_layernorm_weight, hidden_states)
hidden_states = self.convert_to_fp16(hidden_states)
# mlp
mm1 = self.linear(hidden_states, self.intermediate_size, self.hidden_size,
bias=False, wt_dtype=self.dtype)
mm2 = self.linear(hidden_states, self.intermediate_size, self.hidden_size,
bias=False, wt_dtype=self.dtype) # type: ignore[attr-defined]
mm1 = self.eltwise_mul(self.swish(mm1), mm2) # type: ignore[attr-defined]
hidden_states = self.linear(mm1, self.hidden_size, self.intermediate_size, bias=False, wt_dtype=self.dtype)
hidden_states = self.eltwise_add(residual, hidden_states)
hidden_states = self.convert_to_fp16(hidden_states)
return hidden_states, new_key_states, new_value_states
def rotate_half(self, x):
x1 = self.slice(x, [0, 0, 0, 0], [self.batch_size, self.num_heads, self.seq_len, self.head_dim//2], )
x2 = self.slice(x, [0, 0, 0, self.head_dim//2], [self.batch_size, self.num_heads, self.seq_len, self.head_dim])
return self.concat(self.negative(x2), x1, axis=-1)
def apply_rotary_pos_emb(self, q, k, cos, sin, position_ids):
position_ids = self.squeeze(position_ids)
cos = self.gather(cos, self.convert_to_int32(position_ids), self.constant(1), 0)
sin = self.gather(sin, self.convert_to_int32(position_ids), self.constant(1), 0)
cos = self.unsqueeze(cos, [1])
sin = self.unsqueeze(sin, [1])
q_embed = self.eltwise_add(self.eltwise_mul(q, cos), self.eltwise_mul(self.rotate_half(q), sin))
k_embed = self.eltwise_add(self.eltwise_mul(k, cos), self.eltwise_mul(self.rotate_half(k), sin))
return q_embed, k_embed
class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
def __init__(
self,
parameters: List[Tuple[torch.Tensor]],
input_laynorm_weights: List[torch.Tensor],
post_attn_layernorm_weights: List[torch.Tensor],
layer_indexes : List[int],
cached_cos,
cached_sin,
num_heads: int,
head_dim: int,
num_key_value_heads: int,
rms_norm_eps,
intermediate_size,
max_seq_len: int = 128,
):
super().__init__()
op_parameters = []
for w in parameters:
if isinstance(w, tuple): # from QuantizedLinear
op_parameters.append((w[0].numpy(), w[1].numpy()))
else:
op_parameters.append(w.to(torch.float16).numpy())
self.op_parameters = op_parameters
self.op_id = str(uuid.uuid4())
# self.layer_idx = layer_idx
self.max_seq_len = max_seq_len
# self.rotary_emb = rotary_emb
if isinstance(parameters[0], tuple): # weight, scale from QuantizedLinear
np_dtype = np.int8 if parameters[0][0].dtype == torch.int8 else np.uint8
else: # FP16 Linear
invalidInputError(False, "Please use int4 optimization")
self.layer_indexes = layer_indexes
print("create dedcoder layer")
self.backend_cls_decode = LowBitLlamaMultiDecoderlayer([1, 1, num_heads*head_dim],
input_layernorm_weights=input_laynorm_weights,
post_attn_layernorm_weights=post_attn_layernorm_weights,
cached_cos=cached_cos,
cached_sin=cached_sin,
num_heads=num_heads,
num_key_value_heads=num_key_value_heads,
num_layers=len(layer_indexes),
max_seq_len=max_seq_len,
rms_norm_eps=rms_norm_eps,
intermediate_size=intermediate_size,
mode="decode",
dtype=np_dtype)
print("created dedcoder layer")
self.backend_cls_decode.setWeights(3+len(layer_indexes)*2, self.op_id, *op_parameters)
print("weight setted")
backend_lib.run(self.backend_cls_decode._mm,)
print("first inference done")
self.kv_cache_c_parameter_handel = None
self.kv_cache_parameters = None
self.kv_cache_prefetched = False
def forward(self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,) -> torch.Tensor:
"""Torch module forward method.
Args:
x (torch.Tensor): Input tensor
Returns:
torch.Tensor: result
"""
seq_len = hidden_states.shape[1]
backend_cls = self.backend_cls_decode
pad_len = self.max_seq_len + 1 - attention_mask.size(-1)
pad_mask = (0, pad_len)
padded_attention_mask = F.pad(attention_mask.to(torch.float16), pad_mask,
value=torch.finfo(torch.float16).min)
padded_attention_mask[:,:,:,-1] = 0.0
inputs = (hidden_states.to(torch.float16),
padded_attention_mask,
position_ids,)
if self.kv_cache_parameters is None:
self.kv_cache_parameters = []
self.kv_cache_c_parameter_handel = None
self.kv_cache_prefetched = False
else:
# the case kv cache changed
cached_prt = self.kv_cache_parameters[0].storage().data_ptr()
current_ptr = past_key_value.key_cache[self.layer_indexes[0]].storage().data_ptr()
if cached_prt != current_ptr:
self.kv_cache_parameters = []
self.kv_cache_c_parameter_handel = None
self.kv_cache_prefetched = False
if len(self.kv_cache_parameters) == 0:
for idx in self.layer_indexes:
past_key = past_key_value.key_cache[idx]
past_value = past_key_value.value_cache[idx]
new_size = (past_key.size(0),
past_key.size(1),
self.max_seq_len,
past_key.size(3))
past_key = past_key.as_strided(new_size, past_key.stride(), storage_offset=0)
past_value = past_value.as_strided(new_size, past_value.stride(), storage_offset=0)
self.kv_cache_parameters.append(past_key)
self.kv_cache_parameters.append(past_value)
self.kv_cache_c_parameter_handel = self.backend_cls_decode.create_parameters([p.numpy() for p in self.kv_cache_parameters])
x_np = [elem.to(torch.float16).numpy() for elem in inputs]
with record_function(f"npu_factory"):
if not self.kv_cache_prefetched:
self.backend_cls_decode.load_wt_fn(len(inputs), self.backend_cls_decode._mm, self.kv_cache_c_parameter_handel)
for idx, elem in enumerate(x_np):
self.backend_cls_decode.set_input_tensor(elem, idx)
backend_lib.run(self.backend_cls_decode._mm,)
ret = self.backend_cls_decode.out
results = [adapt_output_tensor(r, r.shape, torch.float16) for r in ret]
hidden_states = results[0]
key_value_states = results[1:]
cache_kwargs = {"cache_position": cache_position, "max_seq_len":self.max_seq_len}
for i in range(len(self.layer_indexes)):
key_states, value_states = past_key_value.update(key_value_states[2*i],
key_value_states[2*i+1],
self.layer_indexes[i], cache_kwargs)
self.backend_cls_decode.load_wt_fn(len(inputs), self.backend_cls_decode._mm, self.kv_cache_c_parameter_handel)
self.kv_cache_prefetched = True
outputs = (hidden_states,)
outputs += (past_key_value,)
return outputs
class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
def __init__(
self,
parameters: List[torch.Tensor],
cached_cos,
cached_sin,
layer_norm_0,
layer_norm_1,
num_heads: int,
num_key_value_heads: int,
layer_idx: int,
rms_norm_eps,
intermediate_size,
max_seq_len: int = 128,
):
super().__init__()
self.op_parameters = parameters
self.op_id = str(uuid.uuid4())
self.layer_idx = layer_idx
self.max_seq_len = max_seq_len
# self.rotary_emb = rotary_emb
if isinstance(parameters[0], tuple): # weight, scale from QuantizedLinear
np_dtype = np.int8 if parameters[0][0].dtype == torch.int8 else np.uint8
else: # FP16 Linear
np_dtype = np.float16
self.backend_cls_prefill = partial(LowBitLlamaDecoderlayer,
cached_cos=cached_cos,
cached_sin=cached_sin,
num_heads=num_heads,
num_key_value_heads=num_key_value_heads,
max_seq_len=max_seq_len,
rms_norm_eps=rms_norm_eps,
intermediate_size=intermediate_size,
mode="prefill",
dtype=np_dtype)
self.backend_cls_decode = partial(LowBitLlamaDecoderlayer,
cached_cos=cached_cos,
cached_sin=cached_sin,
num_heads=num_heads,
num_key_value_heads=num_key_value_heads,
max_seq_len=max_seq_len,
rms_norm_eps=rms_norm_eps,
intermediate_size=intermediate_size,
mode="decode",
dtype=np_dtype)
self.layer_norm_0 = layer_norm_0
self.layer_norm_1 = layer_norm_1
def forward(self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,) -> torch.Tensor:
seq_len = hidden_states.shape[1]
# cos, sin = self.rotary_emb(hidden_states, position_ids)
if seq_len == 1:
backend_cls = self.backend_cls_decode
past_key = past_key_value.key_cache[self.layer_idx]
past_value = past_key_value.value_cache[self.layer_idx]
new_size = (past_key.size(0),
past_key.size(1),
self.max_seq_len,
past_key.size(3))
past_key = past_key.as_strided(new_size, past_key.stride(), storage_offset=0)
past_value = past_value.as_strided(new_size, past_value.stride(), storage_offset=0)
pad_len = self.max_seq_len + 1 - attention_mask.size(-1)
pad_mask = (0, pad_len)
padded_attention_mask = F.pad(attention_mask.to(torch.float16), pad_mask,
value=torch.finfo(torch.float16).min)
padded_attention_mask[:,:,:,-1] = 0.0
inputs = (hidden_states.to(torch.float16),
padded_attention_mask,
position_ids,)
inputs += (self.layer_norm_0, self.layer_norm_1)
inputs += (past_key, past_value)
hidden_states, new_key, new_value = run_model(inputs, self.op_parameters, backend_cls, self.op_id, replica=4)
cache_kwargs = {"cache_position": cache_position, "max_seq_len":self.max_seq_len}
key_states, value_states = past_key_value.update(new_key, new_value, self.layer_idx, cache_kwargs)
else:
backend_cls = self.backend_cls_prefill
inputs = (hidden_states.to(torch.float16), attention_mask, position_ids)
inputs += (self.layer_norm_0, self.layer_norm_1)
hidden_states, past_key, past_value = run_model(inputs, self.op_parameters, backend_cls, self.op_id, replica=1)
cache_kwargs = {"cache_position": cache_position, "max_seq_len":self.max_seq_len}
key_states, value_states = past_key_value.update(past_key, past_value, self.layer_idx, cache_kwargs)
outputs = (hidden_states,)
outputs += (past_key_value,)
return outputs
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for npu model')
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
help='The huggingface repo id for the Llama2 model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
pipeline = True # default
max_seq_len = 1024 # default
if pipeline:
os.environ['MASTER_ADDR'] = '127.0.0.1'
os.environ['MASTER_PORT'] = '29501'
dist.init_process_group()
my_rank = dist.get_rank()
my_size = dist.get_world_size()
logger.info(f"rank: {my_rank}, size: {my_size}")
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, attn_implementation="eager",
load_in_low_bit="sym_int4", pipeline_parallel_stages=2)
if my_rank == 0:
print(model)
dist.barrier()
if my_rank == 1:
print(model)
else:
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, attn_implementation="eager",
load_in_low_bit="sym_int4")
if pipeline:
layer_start = model.layer_start
layer_end = model.layer_end
num_layers = model.num_layers
else:
layer_start = 0
layer_end = 32
num_layers = 32
num_heads = model.model.layers[layer_start].self_attn.num_heads
num_key_value_heads = model.model.layers[layer_start].self_attn.num_key_value_heads
head_dim = model.model.layers[layer_start].self_attn.head_dim
rms_norm_eps = model.config.rms_norm_eps
intermediate_size = model.config.intermediate_size
deocderlayers = []
layer_weights = []
input_layer_norm_weights = []
post_attn_layernorm_weights = []
layer_indexs = range(layer_start, layer_end)
for layer_idx in layer_indexs:
curr_layer = model.model.layers[layer_idx]
attn_layer = curr_layer.self_attn
mlp_layer = curr_layer.mlp
weights = [
# model.model.layers[i].input_layernorm.weight.to(torch.float16),
(attn_layer.q_proj.weight, attn_layer.q_proj.scale),
(attn_layer.k_proj.weight, attn_layer.k_proj.scale),
(attn_layer.v_proj.weight, attn_layer.v_proj.scale),
(attn_layer.o_proj.weight, attn_layer.o_proj.scale),
# model.model.layers[i].post_attention_layernorm.weight.to(torch.float16),
(mlp_layer.gate_proj.weight, mlp_layer.gate_proj.scale),
(mlp_layer.up_proj.weight, mlp_layer.up_proj.scale),
(mlp_layer.down_proj.weight, mlp_layer.down_proj.scale)]
cached_cos = curr_layer.self_attn.rotary_emb.cos_cached.to(torch.float16)
cached_sin = curr_layer.self_attn.rotary_emb.sin_cached.to(torch.float16)
layer_norm_0 = curr_layer.input_layernorm.weight.to(torch.float16)
layer_norm_1 = curr_layer.post_attention_layernorm.weight.to(torch.float16)
new_decoderlayer = FusedLlamaLowBitDecoderlayer(weights,
num_heads=num_heads,
num_key_value_heads=num_key_value_heads,
cached_cos=cached_cos,
cached_sin=cached_sin,
# rotary_emb=model.model.layers[i].self_attn.rotary_emb,
layer_norm_0=layer_norm_0,
layer_norm_1=layer_norm_1,
layer_idx=layer_idx,
rms_norm_eps=rms_norm_eps,
intermediate_size=intermediate_size,
max_seq_len=max_seq_len)
layer_weights.extend(weights)
input_layer_norm_weights.append(layer_norm_0)
post_attn_layernorm_weights.append(layer_norm_1)
model.model.layers[layer_idx] = new_decoderlayer
multi_decoder = FusedLlamaLowBitMultiDecoderlayer(
parameters=layer_weights,
input_laynorm_weights=input_layer_norm_weights,
post_attn_layernorm_weights=post_attn_layernorm_weights,
layer_indexes=layer_indexs,
cached_cos=cached_cos,
cached_sin=cached_sin,
num_heads=num_heads,
head_dim=head_dim,
num_key_value_heads=num_key_value_heads,
rms_norm_eps=rms_norm_eps,
intermediate_size=intermediate_size,
max_seq_len=max_seq_len,
)
model.model.multi_decoder = multi_decoder
print(model)
with torch.inference_mode():
input_ids = tokenizer.encode(args.prompt, return_tensors="pt")
print("finish to load")
print('input length:', len(input_ids[0]))
for i in range(3):
st = time.time()
output = model.generate(input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict)
end = time.time()
if my_rank == 0:
print(f"First token cost: {model.first_token_time} s, rest tokens cost average: {model.rest_cost_mean} s")
print(f'Inference time: {end-st} s')
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
print('-'*20, 'Prompt', '-'*20)
print(args.prompt)
print('-'*20, 'Output', '-'*20)
print(output_str)

View file

@ -27,7 +27,7 @@ from transformers.configuration_utils import PretrainedConfig
from ipex_llm.utils.common.log4Error import invalidInputError
from ipex_llm.transformers.utils import logger
from ipex_llm.transformers.npu_models.convert import optimize_llm
from ipex_llm.transformers.npu_models.convert import optimize_llm, optimize_llm_post
def patch_flash_attn_import(filename: str) -> List[str]:
@ -84,7 +84,7 @@ class _BaseAutoModelClass:
warnings.warn("`device_map` will be ignored")
kwargs['device_map'] = 'cpu'
if kwargs.get('torch_dtype', None) not in [None, 'auto', torch.float]:
if kwargs.get('torch_dtype', None) not in [None, 'auto', torch.float, torch.float16]:
warnings.warn("`torch_dtype` will be ignored, `torch.float` will be used")
kwargs['torch_dtype'] = torch.float
@ -114,7 +114,7 @@ class _BaseAutoModelClass:
ignore_argument(kwargs, "modules_to_not_convert")
ignore_argument(kwargs, "quantization_config")
ignore_argument(kwargs, "speculative")
ignore_argument(kwargs, "pipeline_parallel_stages")
pipeline_parallel_stages = kwargs.pop("pipeline_parallel_stages", 1)
_args = copy.deepcopy(args)
_kwargs = copy.deepcopy(kwargs)
@ -131,12 +131,28 @@ class _BaseAutoModelClass:
logger.info(f"Converting model, it may takes up to several minutes ...")
if pipeline_parallel_stages > 1:
invalidInputError(torch.distributed.get_world_size() == pipeline_parallel_stages,
"Please make sure world size is same as `pipeline_parallel_stages`")
kwargs['torch_dtype'] = torch.float16
from .npu_models.pipeline_parallel import pipeline_parallel, pipeline_parallel_generate
model = pipeline_parallel(model, pipeline_parallel_stages,
kwargs["torch_dtype"], device="cpu")
# add pipeline_parallel_generate to pretrained model dynamically
model.pipeline_parallel_generate = types.MethodType(pipeline_parallel_generate,
model)
from intel_npu_acceleration_library.compiler import create_npu_kernels
with torch.no_grad():
optimize_llm(model)
cls.load_convert(qtype, model, 'cpu', *args, **kwargs)
create_npu_kernels(model)
if pipeline_parallel_stages == 1:
cls.load_convert(qtype, model, 'cpu', *args, **kwargs)
create_npu_kernels(model)
else:
cls.load_convert(qtype, model.model, 'cpu', *args, **kwargs)
create_npu_kernels(model.model)
optimize_llm_post(model)
model = model.eval()
logger.info(f"Finish to convert model")

View file

@ -63,7 +63,8 @@ def replace_with_QuantizedLinear(layer, qtype, device):
(layer.in_features == 18944 and layer.out_features == 3584):
qtype = "sym_int8_rtn"
iqtype = ggml_tensor_qtype[qtype]
qweights, scale = ggml_convert_qtype(layer.weight.data, iqtype, device=device)
qweights, scale = ggml_convert_qtype(layer.weight.data.to(torch.float32),
iqtype, device=device)
return QuantizedLinear(qweights, scale, layer.bias)
@ -79,18 +80,22 @@ def optimize_llm(model: torch.nn.Module):
if model.config.model_type == "llama":
from ipex_llm.transformers.npu_models.llama import merge_qkv
from ipex_llm.transformers.npu_models.llama import merge_mlp
model.apply(merge_qkv)
model.apply(merge_mlp)
from ipex_llm.transformers.npu_models.llama import llama_model_forward
from ipex_llm.transformers.npu_models.llama import llama_fused_model_forward
from ipex_llm.transformers.npu_models.llama import llama_attention_forward
from ipex_llm.transformers.npu_models.llama import llama_mlp_forward
from transformers.models.llama.modeling_llama import LlamaModel
from transformers.models.llama.modeling_llama import LlamaAttention
from transformers.models.llama.modeling_llama import LlamaMLP
convert_forward(model, LlamaModel, llama_model_forward)
convert_forward(model, LlamaAttention, llama_attention_forward)
convert_forward(model, LlamaMLP, llama_mlp_forward)
if hasattr(model, 'pipeline_parallel_stages'):
# experimental support for fused decoderlayer implementation
convert_forward(model, LlamaModel, llama_fused_model_forward)
else:
model.apply(merge_qkv)
model.apply(merge_mlp)
convert_forward(model, LlamaModel, llama_model_forward)
convert_forward(model, LlamaAttention, llama_attention_forward)
convert_forward(model, LlamaMLP, llama_mlp_forward)
elif model.config.model_type == "mistral":
from ipex_llm.transformers.npu_models.mistral import merge_qkv
@ -207,3 +212,28 @@ def optimize_llm(model: torch.nn.Module):
from ipex_llm.transformers.npu_models.phi3 import phi3_attention_forward
convert_forward(model, module.Phi3Attention, phi3_attention_forward)
def optimize_llm_post(model: torch.nn.Module):
# experimental support for fused decoderlayer implementation
if model.config.model_type == "llama":
model.model.embed_tokens.to(torch.float32)
model.model.norm.to(torch.float32)
model.lm_head.to(torch.float32)
from ipex_llm.transformers.low_bit_linear import LowBitLinear, \
ggml_tensor_qtype, FP4Params
if isinstance(model.lm_head, torch.nn.Linear):
new_linear = LowBitLinear(model.lm_head.in_features,
model.lm_head.out_features,
ggml_tensor_qtype["sym_int4"],
False)
paramsLowBit = FP4Params(data=model.lm_head.weight.data,
requires_grad=False,
quantized=False,
_shape=None,
qtype=ggml_tensor_qtype["sym_int4"],
in_features=model.lm_head.in_features).to("cpu")
new_linear._parameters['weight'] = paramsLowBit
model.lm_head = new_linear

View file

@ -0,0 +1,115 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
from typing import Optional, Dict, Tuple, Any
from transformers.cache_utils import DynamicCache
def init_fused_kv_cache(batch_size, num_heads, head_dim, current_length, max_length, dtype, device):
key_cache_storage = torch.zeros(batch_size, num_heads,
max_length, head_dim,
dtype=dtype, device=device)
value_cache_storage = torch.zeros(batch_size, num_heads,
max_length, head_dim,
dtype=dtype, device=device)
key_cache = key_cache_storage.as_strided((batch_size, num_heads,
current_length, head_dim),
key_cache_storage.stride(),
storage_offset=0)
value_cache = value_cache_storage.as_strided((batch_size, num_heads,
current_length, head_dim),
value_cache_storage.stride(),
storage_offset=0)
return key_cache, value_cache
def append_fused_kv_cache(cache_k, cache_v, key_states, value_states):
new_size = (cache_k.size(0),
cache_k.size(1),
cache_k.size(2) + key_states.size(2),
cache_k.size(3))
new_cache_k = cache_k.as_strided(new_size, cache_k.stride(), storage_offset=0)
new_cache_k[:, :, cache_k.size(2):cache_k.size(2) + key_states.size(2), :] = key_states
new_cache_v = cache_v.as_strided(new_size, cache_v.stride(), storage_offset=0)
new_cache_v[:, :, cache_v.size(2):cache_v.size(2) + key_states.size(2), :] = value_states
return new_cache_k, new_cache_v
class DynamicFusedNormalCache(DynamicCache):
# Experimental support for fused decoderlayer implementation on NPU
# Currently only for llama2
KV_ALLOC_BLOCK_LENGTH = 256
def __init__(self) -> None:
self.key_cache: Dict[int, torch.Tensor] = {}
self.value_cache: Dict[int, torch.Tensor] = {}
self._seen_tokens = 0 # Used in `generate` to keep how many tokens the cache has seen
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]]=None,
) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size, num_heads, seq_len, head_dim = key_states.shape
max_seq_length = cache_kwargs.pop("max_seq_len", None)
transpose_value = cache_kwargs.pop("transpose_value", None)
if layer_idx == 0 or layer_idx == 16:
if hasattr(self, "_seen_tokens"):
# 4.39 uses `_seen_tokens`
self._seen_tokens += seq_len
else:
# 4.37 uses `seen_tokens`
self.seen_tokens += seq_len
# Update the cache
# if len(self.key_cache) <= layer_idx:
if layer_idx not in self.key_cache:
max_len = max_seq_length if max_seq_length is not None else key_states.size(2) + \
self.KV_ALLOC_BLOCK_LENGTH
k_cache, v_cache = init_fused_kv_cache(
batch_size, num_heads, head_dim,
0, max_len,
key_states.dtype, key_states.device,
)
k_cache, v_cache = append_fused_kv_cache(k_cache, v_cache, key_states, value_states)
self.key_cache[layer_idx] = k_cache
self.value_cache[layer_idx] = v_cache
else:
k_cache = self.key_cache[layer_idx]
v_cache = self.value_cache[layer_idx]
kv_seq_len = k_cache.size(2) + key_states.size(2)
k_cache, v_cache = append_fused_kv_cache(k_cache, v_cache, key_states, value_states)
self.key_cache[layer_idx] = k_cache
self.value_cache[layer_idx] = v_cache
return self.key_cache[layer_idx], self.value_cache[layer_idx]
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
"""Returns the sequence length of the cached states.
A layer index can be optionally passed."""
for idx, layer in self.key_cache.items():
return layer.shape[-2]

View file

@ -182,6 +182,137 @@ def llama_model_forward(
)
def llama_fused_model_forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = (
output_attentions if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
invalidInputError(False,
("You cannot specify both input_ids and inputs_embeds at the same time, "
"and must specify either one"))
if self.gradient_checkpointing and self.training and use_cache:
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
past_seen_tokens = 0
# ipex-llm changes start
from ipex_llm.transformers.npu_models.kv import DynamicFusedNormalCache
if use_cache and not isinstance(past_key_values, DynamicFusedNormalCache):
past_key_values = DynamicFusedNormalCache.from_legacy_cache(past_key_values)
past_seen_tokens = past_key_values.get_seq_length()
if cache_position is None:
cache_position = torch.arange(past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1],
device=inputs_embeds.device)
# ipex-llm changes end
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds,
cache_position, past_seen_tokens)
# embed positions
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
seq_len = hidden_states.size(1)
if seq_len == 1:
# multi_decoder = self.layers[(self.layer_end + 1) % num_layers]
layer_outputs = self.multi_decoder(hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,)
hidden_states = layer_outputs[0]
next_decoder_cache = layer_outputs[1]
else:
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
# ipex-llm changes start
next_cache = next_decoder_cache if use_cache else None
# ipex-llm changes end
if not return_dict:
return tuple(v for v in [hidden_states, next_cache,
all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def llama_attention_forward(
self,
hidden_states: torch.Tensor,

View file

@ -0,0 +1,639 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/huggingface/transformers/blob/main/src/transformers/generation/utils.py
#
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
import torch.nn.functional as F
import torch.distributed as dist
import os
import time
import numpy as np
from typing import Callable, List, Optional, Union, Tuple
from types import SimpleNamespace
import transformers
from transformers import GenerationConfig, LogitsProcessorList, StoppingCriteriaList
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from ipex_llm.utils.common import invalidInputError
from ipex_llm.ggml.quantize import ggml_tensor_qtype
import logging
logger = logging.getLogger(__name__)
# patch GenerationMixin.generate
from transformers import GenerationMixin
original_generate = GenerationMixin.generate
class DummyLayer(nn.Module):
def __init__(self, *args):
super().__init__()
# to avoid AttributeError in https://github.com/intel-analytics/ipex-llm/blob/main/
# python/llm/src/ipex_llm/transformers/models/llama.py#L2076
self.weight = nn.Parameter(torch.empty(0,), requires_grad=False)
def forward(self, x):
return x
class Dummy_MLPLayer(nn.Module):
def __init__(self, *args):
super().__init__()
# to avoid AttributeError in https://github.com/intel-analytics/ipex-llm/blob/main/
# python/llm/src/ipex_llm/transformers/models/llama.py#L119
self.up_proj = DummyLayer()
self.down_proj = DummyLayer()
self.shared_expert = SimpleNamespace()
self.shared_expert.up_proj = DummyLayer()
def forward(self, x):
return x
class Dummy_DecoderLayer(nn.Module):
def __init__(self, *args):
super().__init__()
# to avoid AttributeError
self.input_layernorm = DummyLayer()
self.mlp = Dummy_MLPLayer()
def forward(self, hidden_states, *args, **kwargs):
past_key_value = kwargs.get('past_key_value', None)
use_cache = kwargs.get('use_cache', False)
outputs = (hidden_states,)
if use_cache:
outputs += (past_key_value,)
return outputs
class Dummy_GLMBlock(nn.Module):
def __init__(self, *args):
super().__init__()
# to avoid AttributeError
self.input_layernorm = DummyLayer()
self.mlp = Dummy_MLPLayer()
def forward(
self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True,
):
if kv_cache is None:
return hidden_states, ()
return hidden_states, kv_cache
def init_pipeline_parallel():
import oneccl_bindings_for_pytorch
os.environ["MASTER_ADDR"] = os.environ.get("MASTER_ADDR", "127.0.0.1")
os.environ["MASTER_PORT"] = os.environ.get("MASTER_PORT", "29500")
dist.init_process_group('ccl')
def low_mem_convert(model):
from ipex_llm.transformers.convert import convert_forward
import importlib
if 'llama' in model.config.model_type:
convert_forward(
model,
transformers.models.llama.modeling_llama.LlamaForCausalLM,
llama_causallm_forward_4_37_lowmem)
elif model.config.model_type == "chatglm" and not hasattr(model.config, "vision_config"):
if model.config.num_layers == 40:
# for glm4-9b
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
convert_forward(
model,
module.ChatGLMForConditionalGeneration,
glm4_conditional_generation_forward_lowmem)
else:
# for chatglm3-6b
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
convert_forward(
model,
module.ChatGLMForConditionalGeneration,
chatglm3_conditional_generation_forward_lowmem)
return model
def pipeline_parallel(model, pipeline_parallel_stages, torch_dtype=torch.float32, device=None):
global num_layers
if hasattr(model.config, 'num_hidden_layers'):
num_layers = model.config.num_hidden_layers
elif hasattr(model.config, 'num_layers'):
# for chatglm3-6b
num_layers = model.config.num_layers
slice_size = (num_layers + pipeline_parallel_stages - 1) // pipeline_parallel_stages
local_rank = dist.get_rank()
global layer_start
global layer_end
layer_start = slice_size * local_rank
layer_end = layer_start + min(slice_size, num_layers - layer_start)
if model.config.model_type == "qwen" and hasattr(model.config, "visual"):
# for Qwen-VL-Chat
for i in range(num_layers):
if i < layer_start or i >= layer_end:
model._modules['transformer'].h[i] = Dummy_DecoderLayer()
if local_rank != 0:
model._modules['transformer'].wte = DummyLayer()
model._modules['transformer'].drop = DummyLayer()
if local_rank != pipeline_parallel_stages - 1:
model._modules['transformer'].ln_f = DummyLayer()
model._modules['ln_f'] = DummyLayer()
model._modules['lm_head'] = DummyLayer()
elif model.config.model_type == "chatglm":
# for chatglm3-6b, glm-4-9b-chat
for i in range(num_layers):
if i < layer_start or i >= layer_end:
model._modules['transformer'].encoder.layers[i] = Dummy_GLMBlock()
else:
model._modules['transformer'].encoder.layers[i].self_attention.num_layers = \
i - layer_start
if local_rank != 0:
model._modules['transformer'].embedding = DummyLayer()
if local_rank != pipeline_parallel_stages - 1:
model._modules['transformer'].encoder.final_layernorm = DummyLayer()
model._modules['transformer'].output_layer = DummyLayer()
else:
for i in range(num_layers):
if i < layer_start or i >= layer_end:
model._modules['model'].layers[i] = Dummy_DecoderLayer()
else:
model._modules['model'].layers[i].self_attn.layer_idx = i - layer_start
if local_rank != 0:
model._modules['model'].embed_tokens = DummyLayer()
if local_rank != pipeline_parallel_stages - 1:
model._modules['model'].norm = DummyLayer()
model._modules['lm_head'] = DummyLayer()
_enable_lowmem = os.getenv('IPEX_LLM_LOW_MEM')
_enable_lowmem = (_enable_lowmem is not None) and (_enable_lowmem.lower() == "1")
if _enable_lowmem:
model = low_mem_convert(model)
model.pipeline_parallel_stages = pipeline_parallel_stages
model.layer_start = layer_start
model.layer_end = layer_end
model.num_layers = num_layers
if torch_dtype == torch.float16:
model = model.half()
if device is None:
model = model.to(f'xpu:{local_rank}')
else:
model.to(device)
return model
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor] = None,
generation_config: Optional[GenerationConfig] = None,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]]=None,
synced_gpus: Optional[bool] = None,
assistant_model: Optional["PreTrainedModel"] = None,
streamer: Optional["BaseStreamer"] = None,
**kwargs,
):
if hasattr(self, 'pipeline_parallel_stages') and self.pipeline_parallel_stages > 1:
# priority: `generation_config` argument > `model.generation_config`
if generation_config is None:
if (
self.generation_config._from_model_config
and self.generation_config._original_object_hash == hash(self.generation_config)
and self.config._has_non_default_generation_parameters()
):
new_generation_config = GenerationConfig.from_model_config(self.config)
if new_generation_config != self.generation_config:
self.generation_config = new_generation_config
generation_config = self.generation_config
if generation_config.pad_token_id is None and generation_config.eos_token_id is not None:
eos_token_id = generation_config.eos_token_id
if isinstance(eos_token_id, list):
eos_token_id = eos_token_id[0]
logger.warning("Setting `pad_token_id` to `eos_token_id`: "
f"{eos_token_id} for open-end generation.")
generation_config.pad_token_id = eos_token_id
if generation_config is not None and generation_config.max_new_tokens is not None:
max_new_tokens = generation_config.pop("max_new_tokens")
else:
max_new_tokens = kwargs.pop("max_new_tokens", None)
return self.pipeline_parallel_generate(inputs=inputs,
max_new_tokens=max_new_tokens,
generation_config=generation_config,
**kwargs)
return original_generate(self,
inputs=inputs,
generation_config=generation_config,
logits_processor=logits_processor,
stopping_criteria=stopping_criteria,
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
synced_gpus=synced_gpus,
assistant_model=assistant_model,
streamer=streamer,
**kwargs)
GenerationMixin.generate = generate
@torch.no_grad()
def pipeline_parallel_generate(self,
inputs: Optional[torch.Tensor] = None,
max_new_tokens: int = 32,
generation_config: Optional[GenerationConfig] = None,
**kwargs):
model_kwargs = generation_config.update(**kwargs)
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
inputs, generation_config.bos_token_id, model_kwargs
)
bs = inputs_tensor.shape[0]
if model_kwargs.get("attention_mask", None) is None:
model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
inputs_tensor, generation_config.pad_token_id, generation_config.eos_token_id)
if self.config.is_encoder_decoder:
input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation(
batch_size=bs,
model_input_name=model_input_name,
model_kwargs=model_kwargs,
decoder_start_token_id=generation_config.decoder_start_token_id,
bos_token_id=generation_config.bos_token_id,
device=inputs_tensor.device,
)
else:
input_ids = inputs_tensor if model_input_name == "input_ids" \
else model_kwargs.pop("input_ids")
local_rank = dist.get_rank()
pre_rank = (local_rank - 1) % self.pipeline_parallel_stages
next_rank = (local_rank + 1) % self.pipeline_parallel_stages
global layer_start
global layer_end
global num_layers
self.first_token_time = 0
self.next_token_time = []
pad_token_id = generation_config.pad_token_id
eos_token_id = generation_config.eos_token_id
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) \
if eos_token_id is not None else None
_input_ids = None
_past_key_values = None
bs = input_ids.shape[0]
output_ids = input_ids.clone()
os.environ["IPEX_LLM_QUANTIZE_KV_CACHE"] = "0"
step = 0
# keep track of which sequences are already finished
unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
this_peer_finished = False
while True:
if step >= max_new_tokens:
break
if _input_ids is None:
_input_ids = input_ids
model_inputs = self.prepare_inputs_for_generation(output_ids, **model_kwargs)
tic = time.time()
if local_rank == 0:
outputs = self(**model_inputs)
else:
_inputs_shape = _input_ids.shape + (self.config.hidden_size,)
if step == 0 and self.config.model_type == "chatglm" \
and hasattr(self.config, "vision_config"):
# for glm-4v, image features are mapped during 1st token
# 1597 are computed according to computation process of conv
_images_feature = 1597 + _input_ids.shape[0] * 2 + _input_ids.shape[1]
_inputs_shape = (_input_ids.shape[0], _images_feature, self.config.hidden_size,)
inputs_embeds = torch.empty(_inputs_shape,
device=input_ids.device, dtype=torch.float16)
dist.recv(inputs_embeds, src=pre_rank)
model_inputs.pop("input_ids")
model_inputs["inputs_embeds"] = inputs_embeds
outputs = self(**model_inputs)
if local_rank == self.pipeline_parallel_stages - 1:
logits = outputs.logits
next_ids = torch.argmax(logits[:, -1:, :], dim=-1)
dist.broadcast(next_ids, src=local_rank)
else:
send_data = outputs[0].to(torch.float16)
dist.send(send_data, dst=next_rank)
next_ids = torch.empty((bs, 1), device=input_ids.device, dtype=torch.int64)
dist.broadcast(next_ids, src=self.pipeline_parallel_stages - 1)
_input_ids = next_ids
output_ids = torch.cat([output_ids, next_ids], dim=-1)
model_kwargs = self._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
)
# finished sentences should have their next token be a padding token
next_ids = next_ids.squeeze()
if eos_token_id is not None:
if pad_token_id is None:
invalidInputError(False, "If `eos_token_id` is defined, "
"make sure that `pad_token_id` is defined.")
next_ids = next_ids * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
if self.config.model_type == "chatglm" and self.config.num_layers == 40 \
and not hasattr(self.config, "vision_config"):
# for glm-4-9b-chat
if step == 0:
value_placeholder = torch.empty_like((outputs.past_key_values)[-1][0])
past_key_values_placeholder = tuple(
(value_placeholder, value_placeholder) for _ in range(layer_start)
) + (outputs.past_key_values)[: layer_end - layer_start] + tuple(
(value_placeholder, value_placeholder) for _ in range(layer_end, num_layers)
)
_past_key_values = past_key_values_placeholder
else:
_past_key_values = outputs.past_key_values
elif self.config.model_type in ["baichuan", "chatglm"] or \
(self.config.model_type == "qwen" and hasattr(self.config, "visual")):
# for baichuan2, chatglm3, Qwen-VL-Chat, glm-4v-9b
if local_rank != 0:
value_placeholder = torch.empty_like((outputs.past_key_values)[-1][0])
past_key_values_placeholder = tuple(
(value_placeholder, value_placeholder) for _ in range(layer_start)
) + (outputs.past_key_values)[layer_start:]
_past_key_values = past_key_values_placeholder
else:
_past_key_values = outputs.past_key_values
else:
_past_key_values = outputs.past_key_values
toc = time.time()
if step == 0:
self.first_token_time = toc - tic
else:
self.next_token_time.append(toc - tic)
# if eos_token was found in one sentence, set sentence to finished
if eos_token_id_tensor is not None:
unfinished_sequences = unfinished_sequences.mul(
next_ids.tile(eos_token_id_tensor.shape[0], 1)
.ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
)
# stop when each sentence is finished
if unfinished_sequences.max() == 0:
this_peer_finished = True
if this_peer_finished:
break
step += 1
if self.device.type == 'xpu':
torch.xpu.synchronize()
self.rest_cost_mean = np.mean(self.next_token_time)
return output_ids
def llama_causallm_forward_4_37_lowmem(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions # noqa
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states # noqa
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
# ipex-llm change starts
device = hidden_states.device
if self.config.pretraining_tp > 1:
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0) # noqa
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)] # noqa
logits = torch.cat(logits, dim=-1)
else:
if device.type == "xpu":
torch.xpu.empty_cache()
logits = self.lm_head(hidden_states)
if device.type == "xpu":
torch.xpu.empty_cache()
# logits = logits.float()
# ipex-llm change ends
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def chatglm3_conditional_generation_forward_lowmem(
self,
input_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
return_last_logit: Optional[bool] = False,
):
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids=input_ids,
position_ids=position_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
if return_last_logit:
hidden_states = hidden_states[-1:]
device = hidden_states.device
# ipex-llm change starts
if device.type == "xpu":
torch.xpu.empty_cache()
lm_logits = self.transformer.output_layer(hidden_states)
if device.type == "xpu":
torch.xpu.empty_cache()
lm_logits = lm_logits.transpose(0, 1).contiguous()
loss = None
if labels is not None:
# lm_logits = lm_logits.to(torch.float32)
# Shift so that tokens < n predict n
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss(ignore_index=-100)
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
lm_logits = lm_logits.to(hidden_states.dtype)
loss = loss.to(hidden_states.dtype)
# ipex-llm change ends
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def glm4_conditional_generation_forward_lowmem(
self,
input_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
return_last_logit: Optional[bool] = False,
):
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids=input_ids,
position_ids=position_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
if return_last_logit:
hidden_states = hidden_states[:, -1:]
device = hidden_states.device
# ipex-llm change starts
if device.type == "xpu":
torch.xpu.empty_cache()
lm_logits = self.transformer.output_layer(hidden_states)
if device.type == "xpu":
torch.xpu.empty_cache()
loss = None
if labels is not None:
# lm_logits = lm_logits.to(torch.float32)
# Shift so that tokens < n predict n
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss(ignore_index=-100)
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
lm_logits = lm_logits.to(hidden_states.dtype)
loss = loss.to(hidden_states.dtype)
# ipex-llm change ends
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)