ipex-llm/python/llm/example/CPU/QLoRA-FineTuning/alpaca-qlora/README.md
Wang, Jian4 a0a80d232e LLM: Add qlora cpu distributed readme (#9561)
* init readme

* add distributed guide

* update
2023-11-30 13:42:30 +08:00

4.6 KiB

Alpaca QLoRA Finetuning (experimental support)

This example ports Alpaca-LoRA to BigDL-LLM QLoRA on Intel CPUs.

1. Install

conda create -n llm python=3.9
conda activate llm
pip install --pre --upgrade bigdl-llm[all]
pip install datasets transformers==4.34.0
pip install fire peft==0.5.0
pip install accelerate==0.23.0

2. Configures environment variables

source bigdl-llm-init -t

3. Finetuning LLaMA-2-7B on a node:

Example usage:

python ./alpaca_qlora_finetuning_cpu.py \
    --base_model "meta-llama/Llama-2-7b-hf" \
    --data_path "yahma/alpaca-cleaned" \
    --output_dir "./bigdl-qlora-alpaca"

Note: You could also specify --base_model to the local path of the huggingface model checkpoint folder and --data_path to the local path of the dataset JSON file.

Sample Output

{'loss': 1.9231, 'learning_rate': 2.9999945367033285e-05, 'epoch': 0.0}                                                                                                                            
{'loss': 1.8622, 'learning_rate': 2.9999781468531096e-05, 'epoch': 0.01}                                                                                                                           
{'loss': 1.9043, 'learning_rate': 2.9999508305687345e-05, 'epoch': 0.01}                                                                                                                           
{'loss': 1.8967, 'learning_rate': 2.999912588049185e-05, 'epoch': 0.01}                                                                                                                            
{'loss': 1.9658, 'learning_rate': 2.9998634195730358e-05, 'epoch': 0.01}                                                                                                                           
{'loss': 1.8386, 'learning_rate': 2.9998033254984483e-05, 'epoch': 0.02}                                                                                                                           
{'loss': 1.809, 'learning_rate': 2.999732306263172e-05, 'epoch': 0.02}                                                                                                                             
{'loss': 1.8552, 'learning_rate': 2.9996503623845395e-05, 'epoch': 0.02}                                                                                                                           
  1%|█                                                                                                                                                         | 8/1164 [xx:xx<xx:xx:xx, xx s/it]

Guide to finetuning QLoRA on one node with multiple sockets

  1. install extra lib
# need to run the alpaca stand-alone version first
# for using mpirun
pip install oneccl_bind_pt -f https://developer.intel.com/ipex-whl-stable
  1. modify conf in finetune_one_node_two_sockets.sh and run
source ${conda_env}/lib/python3.9/site-packages/oneccl_bindings_for_pytorch/env/setvars.sh
bash finetune_one_node_two_sockets.sh

Guide to use different prompts or different datasets

Now the prompter is for the datasets with instruction input(optional) and output. If you want to use different datasets, you can add template file xxx.json in templates. And then update utils.prompter.py's generate_prompt method and update generate_and_tokenize_prompt method to fix the dataset. For example, I want to train llama2-7b with english_quotes just like this example

  1. add template english_quotes.json
{
    "prompt": "{quote} ->: {tags}"
}
  1. update prompter.py and add new generate_prompt method
def generate_quote_prompt(self, quote: str, tags: Union[None, list]=None,) -> str:
    tags = str(tags)
    res = self.template["prompt"].format(
        quote=quote, tags=tags
    )
    if self._verbose:
        print(res)
    return res
  1. update generate_and_tokenize_prompt method
def generate_and_tokenize_prompt(data_point):
    full_prompt = prompter.generate_quote_prompt(
        data_point["quote"], data_point["tags"]
    )
    user_prompt = prompter.generate_quote_prompt(
        data_point["quote"], data_point["tags"]
    )
  1. choose prompt english_quotes to train
python ./quotes_qlora_finetuning_cpu.py \
    --base_model "meta-llama/Llama-2-7b-hf" \
    --data_path "./english_quotes" \
    --output_dir "./bigdl-qlora-alpaca" \
    --prompt_template_name "english_quotes"