* refactor toc * refactor toc * Change to pydata-sphinx-theme and update packages requirement list for ReadtheDocs * Remove customized css for old theme * Add index page to each top bar section and limit dropdown maximum to be 4 * Use js to change 'More' to 'Libraries' * Add custom.css to conf.py for further css changes * Add BigDL logo and search bar * refactor toc * refactor toc and add overview * refactor toc and add overview * refactor toc and add overview * refactor get started * add paper and video section * add videos * add grid columns in landing page * add document roadmap to index * reapply search bar and github icon commit * reorg orca and chronos sections * Test: weaken ads by js * update: change left attrbute * update: add comments * update: change opacity to 0.7 * Remove useless theme template override for old theme * Add sidebar releases component in the home page * Remove sidebar search and restore top nav search button * Add BigDL handouts * Add back to homepage button to pages except from the home page * Update releases contents & styles in left sidebar * Add version badge to the top bar * Test: weaken ads by js * update: add comments * remove landing page contents * rfix chronos install * refactor install * refactor chronos section titles * refactor nano index * change chronos landing * revise chronos landing page * add document navigator to nano landing page * revise install landing page * Improve css of versions in sidebar * Make handouts image pointing to a page in new tab * add win guide to install * add dliib installation * revise title bar * rename index files * add index page for user guide * add dllib and orca API * update user guide landing page * refactor side bar * Remove extra style configuration of card components & make different card usage consistent * Remove extra styles for Nano how-to guides * Remove extra styles for Chronos how-to guides * Remove dark mode for now * Update index page description * Add decision tree for choosing BigDL libraries in index page * add dllib models api, revise core layers formats * Change primary & info color in light mode * Restyle card components * Restructure Chronos landing page * Update card style * Update BigDL library selection decision tree * Fix failed Chronos tutorials filter * refactor PPML documents * refactor and add friesian documents * add friesian arch diagram * update landing pages and fill key features guide index page * Restyle link card component * Style video frames in PPML sections * Adjust Nano landing page * put api docs to the last in index for convinience * Make badge horizontal padding smaller & small changes * Change the second letter of all header titles to be small capitalizd * Small changes on Chronos index page * Revise decision tree to make it smaller * Update: try to change the position of ads. * Bugfix: deleted nonexist file config * Update: update ad JS/CSS/config * Update: change ad. * Update: delete my template and change files. * Update: change chronos installation table color. * Update: change table font color to --pst-color-primary-text * Remove old contents in landing page sidebar * Restyle badge for usage in card footer again * Add quicklinks template on landing page sidebar * add quick links * Add scala logo * move tf, pytorch out of the link * change orca key features cards * fix typo * fix a mistake in wording * Restyle badge for card footer * Update decision tree * Remove useless html templates * add more api docs and update tutorials in dllib * update chronos install using new style * merge changes in nano doc from master * fix quickstart links in sidebar quicklinks * Make tables responsive * Fix overflow in api doc * Fix list indents problems in [User guide] section * Further fixes to nested bullets contents in [User Guide] section * Fix strange title in Nano 5-min doc * Fix list indent problems in [DLlib] section * Fix misnumbered list problems and other small fixes for [Chronos] section * Fix list indent problems and other small fixes for [Friesian] section * Fix list indent problem and other small fixes for [PPML] section * Fix list indent problem for developer guide * Fix list indent problem for [Cluster Serving] section * fix dllib links * Fix wrong relative link in section landing page Co-authored-by: Yuwen Hu <yuwen.hu@intel.com> Co-authored-by: Juntao Luo <1072087358@qq.com>
		
			
				
	
	
	
	
		
			6.7 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	Keras-Like API
1. Introduction
DLlib provides Keras-like API based on Keras 1.2.2 for distributed deep learning on Apache Spark. Users can easily use the Keras-like API to create a neural network model, and train, evaluate or tune it in a distributed fashion on Spark.
To define a model in Scala using the Keras-like API, one just needs to import the following packages:
import com.intel.analytics.bigdl.dllib.keras.layers._
import com.intel.analytics.bigdl.dllib.keras.models._
import com.intel.analytics.bigdl.dllib.utils.Shape
One of the highlighted features with regard to the new API is shape inference. Users only need to specify the input shape (a Shape object excluding batch dimension, for example, inputShape=Shape(3, 4) for 3D input) for the first layer of a model and for the remaining layers, the input dimension will be automatically inferred.
2. LeNet Example
Here we use the Keras-like API to define a LeNet CNN model and train it on the MNIST dataset:
import com.intel.analytics.bigdl.numeric.NumericFloat
import com.intel.analytics.bigdl.dllib.keras.layers._
import com.intel.analytics.bigdl.dllib.keras.models._
import com.intel.analytics.bigdl.dllib.utils.Shape
val model = Sequential()
model.add(Reshape(Array(1, 28, 28), inputShape = Shape(28, 28, 1)))
model.add(Convolution2D(6, 5, 5, activation = "tanh").setName("conv1_5x5"))
model.add(MaxPooling2D())
model.add(Convolution2D(12, 5, 5, activation = "tanh").setName("conv2_5x5"))
model.add(MaxPooling2D())
model.add(Flatten())
model.add(Dense(100, activation = "tanh").setName("fc1"))
model.add(Dense(10, activation = "softmax").setName("fc2"))
model.getInputShape().toSingle().toArray // Array(-1, 28, 28, 1)
model.getOutputShape().toSingle().toArray // Array(-1, 10)
3. Shape
Input and output shapes of a model in the Keras-like API are described by the Shape object in Scala, which can be classified into SingleShape and MultiShape.
SingleShape is just a list of Int indicating shape dimensions while MultiShape is essentially a list of Shape.
Example code to create a shape:
// create a SingleShape
val shape1 = Shape(3, 4)
// create a MultiShape consisting of two SingleShape
val shape2 = Shape(List(Shape(1, 2, 3), Shape(4, 5, 6)))
You can use method toSingle() to cast a Shape to a SingleShape. Similarly, use toMulti() to cast a Shape to a MultiShape.
4. Define a model
You can define a model either using Sequential API or Functional API. Remember to specify the input shape for the first layer.
After creating a model, you can call the following methods:
getInputShape()
getOutputShape()
- Return the input or output shape of a model, which is a 
Shapeobject. ForSingleShape, the first entry is-1representing the batch dimension. For a model with multiple inputs or outputs, it will return aMultiShape. 
setName(name)
- Set the name of the model.
 
5. Sequential API
The model is described as a linear stack of layers in the Sequential API. Layers can be added into the Sequential container one by one and the order of the layers in the model will be the same as the insertion order.
To create a sequential container:
Sequential()
Example code to create a sequential model:
import com.intel.analytics.bigdl.dllib.keras.layers.{Dense, Activation}
import com.intel.analytics.bigdl.dllib.keras.models.Sequential
import com.intel.analytics.bigdl.dllib.utils.Shape
val model = Sequential[Float]()
model.add(Dense[Float](32, inputShape = Shape(128)))
model.add(Activation[Float]("relu"))
6. Functional API
The model is described as a graph in the Functional API. It is more convenient than the Sequential API when defining some complex model (for example, a model with multiple outputs).
To create an input node:
Input(inputShape = null, name = null)
Parameters:
inputShape: AShapeobject indicating the shape of the input node, not including batch.name: String to set the name of the input node. If not specified, its name will by default to be a generated string.
To create a graph container:
Model(input, output)
Parameters:
input: An input node or an array of input nodes.output: An output node or an array of output nodes.
To merge a list of input nodes (NOT layers), following some merge mode in the Functional API:
import com.intel.analytics.bigdl.dllib.keras.layers.Merge.merge
merge(inputs, mode = "sum", concatAxis = -1) // This will return an output NODE.
Parameters:
inputs: A list of node instances. Must be more than one node.mode: Merge mode. String, must be one of: 'sum', 'mul', 'concat', 'ave', 'cos', 'dot', 'max'. Default is 'sum'.concatAxis: Int, axis to use when concatenating nodes. Only specify this when merge mode is 'concat'. Default is -1, meaning the last axis of the input.
Example code to create a graph model:
import com.intel.analytics.bigdl.dllib.keras.layers.{Dense, Input}
import com.intel.analytics.bigdl.dllib.keras.layers.Merge.merge
import com.intel.analytics.bigdl.dllib.keras.models.Model
import com.intel.analytics.bigdl.dllib.utils.Shape
// instantiate input nodes
val input1 = Input[Float](inputShape = Shape(8))
val input2 = Input[Float](inputShape = Shape(6))
// call inputs() with an input node and get an output node
val dense1 = Dense[Float](10).inputs(input1)
val dense2 = Dense[Float](10).inputs(input2)
// merge two nodes following some merge mode
val output = merge(inputs = List(dense1, dense2), mode = "sum")
// create a graph container
val model = Model[Float](Array(input1, input2), output)
7. Persistence
This section describes how to save and load the Keras-like API.
7.1 save
To save a Keras model, you call the method saveModel(path).
Scala:
import com.intel.analytics.bigdl.dllib.keras.layers.{Dense, Activation}
import com.intel.analytics.bigdl.dllib.keras.models.Sequential
val model = Sequential[Float]()
model.add(Dense[Float](32, inputShape = Shape(128)))
model.add(Activation[Float]("relu"))
model.saveModel("/tmp/seq.model")
Python:
import bigdl.dllib.keras.Sequential
from bigdl.dllib.keras.layer import Dense
model = Sequential()
model.add(Dense(input_shape=(32, )))
model.saveModel("/tmp/seq.model")
7.2 load
To load a saved Keras model, you call the method load_model(path).
Scala:
import com.intel.analytics.bigdl.dllib.keras.Models
val model = Models.loadModel[Float]("/tmp/seq.model")
Python:
from bigdl.dllib.keras.models
model = load_model("/tmp/seq.model")