ipex-llm/python/llm/dev/benchmark/README.md
Wang, Jian4 9df70d95eb
Refactor bigdl.llm to ipex_llm (#24)
* Rename bigdl/llm to ipex_llm

* rm python/llm/src/bigdl

* from bigdl.llm to from ipex_llm
2024-03-22 15:41:21 +08:00

88 lines
3.6 KiB
Markdown

# Benchmark tool for transformers int4 (separate 1st token and rest)
`benchmark_util.py` is used to provide a simple benchmark tool for transformer int4 model to calculate 1st token performance and the rest on CPU and GPU.
## CPU Usage
Just put this file into your benchmark directory, and then wrap your transformer int4 model with `BenchmarkWrapper` (`model = BenchmarkWrapper(model)`).
Take `chatglm-6b` as an example:
```python
import torch
from ipex_llm.transformers import AutoModel
from transformers import AutoTokenizer
from benchmark_util import BenchmarkWrapper
model_path ='THUDM/chatglm-6b'
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True)
model = BenchmarkWrapper(model, do_print=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
prompt = "今天睡不着怎么办"
with torch.inference_mode():
input_ids = tokenizer.encode(prompt, return_tensors="pt")
output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
```
Output will be like:
```bash
=========First token cost xx.xxxxs=========
=========Last token cost average xx.xxxxs (31 tokens in all)=========
```
## GPU Usage
### Inference on single GPU
Just put this file into your benchmark directory, and then wrap your transformer int4 model with `BenchmarkWrapper` (`model = BenchmarkWrapper(model)`).
Take `chatglm-6b` as an example:
```python
import torch
import intel_extension_for_pytorch as ipex
from ipex_llm.transformers import AutoModel
from transformers import AutoTokenizer
from benchmark_util import BenchmarkWrapper
model_path ='THUDM/chatglm-6b'
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True)
model = model.to('xpu')
model = BenchmarkWrapper(model, do_print=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
prompt = "今天睡不着怎么办"
with torch.inference_mode():
# wamup two times as use ipex
for i in range(2):
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
# collect performance data now
for i in range(5):
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
```
### Inference on multi GPUs
Similarly, put this file into your benchmark directory, and then wrap your optimized model with `BenchmarkWrapper` (`model = BenchmarkWrapper(model)`).
For example, just need to apply following code patch on [Deepspeed Autotp example code](https://github.com/intel-analytics/BigDL/blob/main/python/llm/example/GPU/Deepspeed-AutoTP/deepspeed_autotp.py) to calculate 1st and the rest token performance:
```python
import torch
import transformers
import deepspeed
+from benchmark_util import BenchmarkWrapper
def get_int_from_env(env_keys, default):
"""Returns the first positive env value found in the `env_keys` list or the default."""
@@ -98,6 +99,7 @@ if __name__ == '__main__':
init_distributed()
print(model)
+ model = BenchmarkWrapper(model, do_print=True)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
```
### Sample Output
Output will be like:
```bash
=========First token cost xx.xxxxs=========
=========Last token cost average xx.xxxxs (31 tokens in all)=========
```