ipex-llm/python/llm/test/inference_gpu/test_transformers_api.py
2023-12-12 17:13:52 +08:00

73 lines
3.1 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os, time
import pytest
from bigdl.llm.transformers import AutoModelForCausalLM, AutoModel, AutoModelForSpeechSeq2Seq
from transformers import LlamaTokenizer, AutoTokenizer
device = os.environ['DEVICE']
print(f'Running on {device}')
if device == 'xpu':
import intel_extension_for_pytorch as ipex
@pytest.mark.parametrize('prompt, answer', [
('What is the capital of France?\n\n', 'Paris')
])
@pytest.mark.parametrize('Model, Tokenizer, model_path',[
(AutoModelForCausalLM, LlamaTokenizer, os.environ.get('LLAMA2_7B_ORIGIN_PATH')),
(AutoModel, AutoTokenizer, os.environ.get('CHATGLM2_6B_ORIGIN_PATH')),
(AutoModelForCausalLM, AutoTokenizer, os.environ.get('FALCON_7B_ORIGIN_PATH')),
(AutoModelForCausalLM, AutoTokenizer, os.environ.get('MPT_7B_ORIGIN_PATH')),
])
def test_completion(Model, Tokenizer, model_path, prompt, answer):
tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
model = Model.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=True,
trust_remote_code=True)
model = model.to(device)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
output = model.generate(input_ids, max_new_tokens=32)
model.to('cpu') # deallocate gpu memory
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
assert answer in output_str
#def test_transformers_auto_model_for_speech_seq2seq_int4():
# from transformers import WhisperProcessor
# from datasets import load_from_disk
# model_path = os.environ.get('WHISPER_TINY_ORIGIN_PATH')
# dataset_path = os.environ.get('SPEECH_DATASET_PATH')
# processor = WhisperProcessor.from_pretrained(model_path)
# ds = load_from_disk(dataset_path)
# sample = ds[0]["audio"]
# input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
# input_features = input_features.to(device)
# model = AutoModelForSpeechSeq2Seq.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True, optimize_model=True)
# model = model.to(device)
# predicted_ids = model.generate(input_features)
# # decode token ids to text
# transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
# model.to('cpu')
# print('Output:', transcription)
# assert 'Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.' in transcription[0]
if __name__ == '__main__':
pytest.main([__file__])