# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os, time import pytest from bigdl.llm.transformers import AutoModelForCausalLM, AutoModel, AutoModelForSpeechSeq2Seq from transformers import LlamaTokenizer, AutoTokenizer device = os.environ['DEVICE'] print(f'Running on {device}') if device == 'xpu': import intel_extension_for_pytorch as ipex @pytest.mark.parametrize('prompt, answer', [ ('What is the capital of France?\n\n', 'Paris') ]) @pytest.mark.parametrize('Model, Tokenizer, model_path',[ (AutoModelForCausalLM, LlamaTokenizer, os.environ.get('LLAMA2_7B_ORIGIN_PATH')), (AutoModel, AutoTokenizer, os.environ.get('CHATGLM2_6B_ORIGIN_PATH')), (AutoModelForCausalLM, AutoTokenizer, os.environ.get('FALCON_7B_ORIGIN_PATH')), (AutoModelForCausalLM, AutoTokenizer, os.environ.get('MPT_7B_ORIGIN_PATH')), ]) def test_completion(Model, Tokenizer, model_path, prompt, answer): tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True) model = Model.from_pretrained(model_path, load_in_4bit=True, optimize_model=True, trust_remote_code=True) model = model.to(device) input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device) output = model.generate(input_ids, max_new_tokens=32) model.to('cpu') # deallocate gpu memory output_str = tokenizer.decode(output[0], skip_special_tokens=True) assert answer in output_str #def test_transformers_auto_model_for_speech_seq2seq_int4(): # from transformers import WhisperProcessor # from datasets import load_from_disk # model_path = os.environ.get('WHISPER_TINY_ORIGIN_PATH') # dataset_path = os.environ.get('SPEECH_DATASET_PATH') # processor = WhisperProcessor.from_pretrained(model_path) # ds = load_from_disk(dataset_path) # sample = ds[0]["audio"] # input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features # input_features = input_features.to(device) # model = AutoModelForSpeechSeq2Seq.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True, optimize_model=True) # model = model.to(device) # predicted_ids = model.generate(input_features) # # decode token ids to text # transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False) # model.to('cpu') # print('Output:', transcription) # assert 'Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.' in transcription[0] if __name__ == '__main__': pytest.main([__file__])