3.5 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	phi-3
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on phi-3 models. For illustration purposes, we utilize the microsoft/Phi-3-mini-4k-instruct as a reference phi-3 model.
Note
: If you want to download the Hugging Face Transformers model, please refer to here.
IPEX-LLM optimizes the Transformers model in INT4 precision at runtime, and thus no explicit conversion is needed.
Requirements
To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to here for more information.
Example: Predict Tokens using generate() API
In the example generate.py, we show a basic use case for a phi-3 model to predict the next N tokens using generate() API, with IPEX-LLM INT4 optimizations.
1. Install
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to here.
After installing conda, create a Python environment for IPEX-LLM:
conda create -n llm python=3.11 # recommend to use Python 3.11
conda activate llm
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
pip install transformers==4.37.0
2. Run
After setting up the Python environment, you could run the example by following steps.
2.1 Client
On client Windows machines, it is recommended to run directly with full utilization of all cores:
python ./generate.py --prompt 'What is AI?'
More information about arguments can be found in Arguments Info section. The expected output can be found in Sample Output section.
2.2 Server
For optimal performance on server, it is recommended to set several environment variables (refer to here for more information), and run the example with all the physical cores of a single socket.
E.g. on Linux,
# set IPEX-LLM env variables
source ipex-llm-init
# e.g. for a server with 48 cores per socket
export OMP_NUM_THREADS=48
numactl -C 0-47 -m 0 python ./generate.py --prompt 'What is AI?'
More information about arguments can be found in Arguments Info section. The expected output can be found in Sample Output section.
2.3 Arguments Info
In the example, several arguments can be passed to satisfy your requirements:
--repo-id-or-model-path: str, argument defining the huggingface repo id for the phi-3 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be'microsoft/Phi-3-mini-4k-instruct'.--prompt: str, argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to beWhat is AI?.--n-predict: int, argument defining the max number of tokens to predict. It is default to be32.
2.4 Sample Output
microsoft/Phi-3-mini-4k-instruct
-------------------- Prompt --------------------
<|user|>
What is AI?<|end|>
<|assistant|>
-------------------- Output --------------------
<s><|user|> What is AI?<|end|><|assistant|> AI, or Artificial Intelligence, refers to the simulation of human intelligence in machines that are programmed to think and learn like humans. The goal