ipex-llm/python/llm/example/NPU/HF-Transformers-AutoModels/LLM/llama2.py
Yang Wang 99b05ba1dc
separate prefill into a process (#11787)
* seperate prefill into a process

* using model.share_memory()

* might work

* worked

* use long prompt

* refactor

* cleanup

* fix bug

* clean up

* changable inter and intra process stages

* refactor

* add max output len

* fix npu_model changes that may cause generate down

* fix npu_model generate import error

* fix generare forward error

---------

Co-authored-by: sgwhat <ge.song@intel.com>
2024-08-19 17:53:36 +08:00

98 lines
3.5 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import torch
import time
import argparse
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
from transformers import AutoTokenizer
from transformers.utils import logging
logger = logging.get_logger(__name__)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Predict Tokens using `generate()` API for npu model"
)
parser.add_argument(
"--repo-id-or-model-path",
type=str,
default="meta-llama/Llama-2-7b-chat-hf",
help="The huggingface repo id for the Llama2 model to be downloaded"
", or the path to the huggingface checkpoint folder",
)
parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
parser.add_argument("--max-output-len", type=int, default=1024)
parser.add_argument("--max-prompt-len", type=int, default=128)
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
parser.add_argument("--intra-pp", type=int, default=2)
parser.add_argument("--inter-pp", type=int, default=2)
args = parser.parse_args()
model_path = args.repo_id_or_model_path
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.float16,
trust_remote_code=True,
attn_implementation="eager",
load_in_low_bit="sym_int4",
enable_mp=True,
max_output_len=args.max_output_len,
max_prompt_len=args.max_prompt_len,
intra_pp=args.intra_pp,
inter_pp=args.inter_pp,
transpose_value_cache=not args.disable_transpose_value_cache,
)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
prompts = [
"Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun",
"Once upon a time, there existed",
"Once upon a time, there existed a little girl who liked to have adventures.",
]
print("-" * 80)
print("done")
with torch.inference_mode():
print("finish to load")
for i in range(5):
import random
idx = random.randint(0, 2)
prompt = prompts[idx]
_input_ids = tokenizer.encode(prompt, return_tensors="pt")
print("input length:", len(_input_ids[0]))
st = time.time()
output = model.generate(
_input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict
)
end = time.time()
print(f"Inference time: {end-st} s")
input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
print("-" * 20, "Input", "-" * 20)
print(input_str)
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
print("-" * 20, "Output", "-" * 20)
print(output_str)
print("-" * 80)
print("done")
print("success shut down")