separate prefill into a process (#11787)
* seperate prefill into a process * using model.share_memory() * might work * worked * use long prompt * refactor * cleanup * fix bug * clean up * changable inter and intra process stages * refactor * add max output len * fix npu_model changes that may cause generate down * fix npu_model generate import error * fix generare forward error --------- Co-authored-by: sgwhat <ge.song@intel.com>
This commit is contained in:
		
							parent
							
								
									da3d7a3a53
								
							
						
					
					
						commit
						99b05ba1dc
					
				
					 6 changed files with 1578 additions and 866 deletions
				
			
		| 
						 | 
				
			
			@ -119,19 +119,17 @@ set BIGDL_USE_NPU=1
 | 
			
		|||
### 3. Running examples
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
torchrun --standalone --nnodes=1 --nproc-per-node=2  llama2.py
 | 
			
		||||
python  llama2.py
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Arguments info:
 | 
			
		||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama2 model (i.e. `meta-llama/Llama-2-7b-chat-hf`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Llama-2-7b-chat-hf'`.
 | 
			
		||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun'`.
 | 
			
		||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
			
		||||
 | 
			
		||||
#### Sample Output
 | 
			
		||||
#### [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
 | 
			
		||||
 | 
			
		||||
```log
 | 
			
		||||
First token cost: xxxx s, rest tokens cost average: xxxx s
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Prompt --------------------
 | 
			
		||||
Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -15,764 +15,84 @@
 | 
			
		|||
#
 | 
			
		||||
 | 
			
		||||
import os
 | 
			
		||||
os.environ["OMP_NUM_THREADS"] = "8"
 | 
			
		||||
os.environ["IPEX_LLM_LAST_LM_HEAD"] = "1"
 | 
			
		||||
import torch
 | 
			
		||||
import time
 | 
			
		||||
import argparse
 | 
			
		||||
 | 
			
		||||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
 | 
			
		||||
from transformers import AutoTokenizer
 | 
			
		||||
from intel_npu_acceleration_library.backend.factory import NNFactory
 | 
			
		||||
from typing import Optional, Sequence, List, Union, Any, Tuple
 | 
			
		||||
import numpy as np
 | 
			
		||||
import math
 | 
			
		||||
from intel_npu_acceleration_library.backend.runtime import set_contiguous, record_function
 | 
			
		||||
from intel_npu_acceleration_library.backend.runtime import adapt_output_tensor, _model_cache
 | 
			
		||||
from collections import deque
 | 
			
		||||
from transformers.cache_utils import Cache
 | 
			
		||||
from intel_npu_acceleration_library.backend.bindings import lib as backend_lib
 | 
			
		||||
import ctypes
 | 
			
		||||
from ipex_llm.utils.common import invalidInputError
 | 
			
		||||
from typing import Optional, List, Generator
 | 
			
		||||
import uuid
 | 
			
		||||
from functools import partial
 | 
			
		||||
import torch.nn.functional as F
 | 
			
		||||
import torch.nn.parallel
 | 
			
		||||
import torch.distributed as dist
 | 
			
		||||
from filelock import FileLock
 | 
			
		||||
 | 
			
		||||
from transformers.utils import logging
 | 
			
		||||
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@torch.no_grad()
 | 
			
		||||
def run_model(
 | 
			
		||||
    x: Union[torch.Tensor, List[torch.Tensor]],
 | 
			
		||||
    weights: List[torch.Tensor],
 | 
			
		||||
    backend_cls: Any,
 | 
			
		||||
    op_id: str,
 | 
			
		||||
    replica: int = 1,
 | 
			
		||||
) -> torch.Tensor:
 | 
			
		||||
    """Run a factory operation. Depending on the datatype of the weights it runs a float or quantized operation.
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        x (Union[torch.Tensor, List[torch.Tensor]]): Activation tensor(s). Its dtype must be torch.float16
 | 
			
		||||
        weights (torch.Tensor): Weights tensor.  Its dtype can be torch.float16 or torch.int8
 | 
			
		||||
        backend_cls (Any): Backend class to run
 | 
			
		||||
        op_id (Optional[str], optional): Operation ID. Defaults to None.
 | 
			
		||||
 | 
			
		||||
    Returns:
 | 
			
		||||
        torch.Tensor: result
 | 
			
		||||
    """
 | 
			
		||||
    global _model_cache
 | 
			
		||||
    import time
 | 
			
		||||
    t0 = time.perf_counter()
 | 
			
		||||
 | 
			
		||||
    # Use or not op_id depending on the class used
 | 
			
		||||
    op_kwargs = {"op_id": op_id} if op_id else {}
 | 
			
		||||
 | 
			
		||||
    if not isinstance(x, (list, tuple)):
 | 
			
		||||
        x = [x]
 | 
			
		||||
 | 
			
		||||
    # Reshape input
 | 
			
		||||
    input_dtype = x[0].dtype
 | 
			
		||||
    x_np = [set_contiguous(elem).to(torch.float16).numpy() for elem in x]
 | 
			
		||||
    op_args = []
 | 
			
		||||
    op_args_flatten = []
 | 
			
		||||
    for w in weights:
 | 
			
		||||
        if isinstance(w, tuple):  # from QuantizedLinear
 | 
			
		||||
            op_args.append((set_contiguous(w[0]).numpy(), set_contiguous(w[1]).numpy()))
 | 
			
		||||
            op_args_flatten.append(op_args[-1][0])
 | 
			
		||||
            op_args_flatten.append(op_args[-1][1])
 | 
			
		||||
        else:
 | 
			
		||||
            op_args.append(set_contiguous(w).to(torch.float16).numpy())
 | 
			
		||||
            op_args_flatten.append(op_args[-1])
 | 
			
		||||
 | 
			
		||||
    shape_dtype_signature = "_".join(
 | 
			
		||||
        ["_".join(str(dim) for dim in t.shape) + f"_{t.dtype}" for t in x_np + op_args_flatten]
 | 
			
		||||
    )
 | 
			
		||||
    key = f"{backend_cls.func.__name__}_{shape_dtype_signature}"
 | 
			
		||||
    models = _model_cache.get(key, None)
 | 
			
		||||
 | 
			
		||||
    input_shapes = [elem.shape for elem in x_np]
 | 
			
		||||
    if models is None:
 | 
			
		||||
        _model_cache[key] = deque([backend_cls(*input_shapes) for i in range(replica)])
 | 
			
		||||
    elif len(models) < 1:
 | 
			
		||||
        _model_cache[key].append(backend_cls(*input_shapes))
 | 
			
		||||
    else:
 | 
			
		||||
        _model_cache[key].rotate(1)
 | 
			
		||||
 | 
			
		||||
    # Get the model
 | 
			
		||||
    model = _model_cache[key][0]
 | 
			
		||||
 | 
			
		||||
    with record_function(f"npu_factory_mul_{key}"):
 | 
			
		||||
        ret = model.run(x_np, *op_args, **op_kwargs)
 | 
			
		||||
 | 
			
		||||
    if isinstance(ret, list):
 | 
			
		||||
        results = [adapt_output_tensor(r, r.shape, input_dtype) for r in ret]
 | 
			
		||||
    else:
 | 
			
		||||
        results = adapt_output_tensor(ret, ret.shape, input_dtype)
 | 
			
		||||
 | 
			
		||||
    return results
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class LowBitLlamaMultiDecoderlayer(NNFactory):
 | 
			
		||||
    def __init__(
 | 
			
		||||
        self,
 | 
			
		||||
        # batch_size: int,
 | 
			
		||||
        # seq_len: int,
 | 
			
		||||
        # hidden_size: int,
 | 
			
		||||
        hidden_shape: Sequence[int],
 | 
			
		||||
        *shapes,
 | 
			
		||||
        num_heads: int,
 | 
			
		||||
        num_key_value_heads: int,
 | 
			
		||||
        num_layers: int,
 | 
			
		||||
        cached_cos,
 | 
			
		||||
        cached_sin,
 | 
			
		||||
        input_layernorm_weights=None,
 | 
			
		||||
        post_attn_layernorm_weights=None,
 | 
			
		||||
        mode: str = "prefill",
 | 
			
		||||
        dtype: np.dtype = np.int8,
 | 
			
		||||
        max_seq_len: int = 1024,
 | 
			
		||||
        transpose_value: bool = False,
 | 
			
		||||
        profile: bool = False,
 | 
			
		||||
        device: str = "NPU",
 | 
			
		||||
        rms_norm_eps,
 | 
			
		||||
        intermediate_size,
 | 
			
		||||
    ):
 | 
			
		||||
        super().__init__(profile, device)
 | 
			
		||||
        self.max_seq_len = max_seq_len
 | 
			
		||||
        self.intermediate_size = intermediate_size
 | 
			
		||||
        self.dtype = dtype
 | 
			
		||||
        self.cached_cos = cached_cos
 | 
			
		||||
        self.cached_sin = cached_sin
 | 
			
		||||
        self.batch_size, self.seq_len, self.hidden_size = hidden_shape
 | 
			
		||||
        self.mode = mode
 | 
			
		||||
        self.rms_norm_eps = rms_norm_eps
 | 
			
		||||
        self.transpose_value = transpose_value
 | 
			
		||||
 | 
			
		||||
        cos = self.constant(self.cached_cos)
 | 
			
		||||
        self.cos = self.unsqueeze(cos, axis=0)
 | 
			
		||||
 | 
			
		||||
        sin = self.constant(self.cached_sin)
 | 
			
		||||
        self.sin = self.unsqueeze(sin, axis=0)
 | 
			
		||||
        
 | 
			
		||||
        if mode == "decode":
 | 
			
		||||
            assert self.seq_len == 1, "seq_len must be 1 for decode mode"
 | 
			
		||||
            self.kv_seq_len = self.max_seq_len + 1
 | 
			
		||||
        else:
 | 
			
		||||
            self.kv_seq_len = self.seq_len
 | 
			
		||||
 | 
			
		||||
        self.num_heads = num_heads
 | 
			
		||||
        self.num_key_value_heads = num_key_value_heads
 | 
			
		||||
        
 | 
			
		||||
        self.head_dim = self.hidden_size // self.num_heads
 | 
			
		||||
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
 | 
			
		||||
        
 | 
			
		||||
        # define input, the order self.parameter matters
 | 
			
		||||
        input = self.parameter((self.batch_size, self.seq_len, self.hidden_size))
 | 
			
		||||
 | 
			
		||||
        # Self Attention
 | 
			
		||||
        if mode == "decode":
 | 
			
		||||
            attention_mask = self.parameter((self.batch_size, 1, 1, self.max_seq_len + 1))
 | 
			
		||||
        else:
 | 
			
		||||
            attention_mask = self.parameter((self.batch_size, 1, self.seq_len, self.seq_len))
 | 
			
		||||
            
 | 
			
		||||
        
 | 
			
		||||
        position_ids = self.parameter((self.batch_size, self.seq_len))
 | 
			
		||||
        past_keys = []
 | 
			
		||||
        past_values = []
 | 
			
		||||
        if mode == "decode":
 | 
			
		||||
            for i in range(num_layers):
 | 
			
		||||
                past_key = self.parameter((self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim))
 | 
			
		||||
                if transpose_value:
 | 
			
		||||
                    past_value = self.parameter((self.batch_size, self.num_key_value_heads, self.head_dim, self.max_seq_len))
 | 
			
		||||
                else:
 | 
			
		||||
                    past_value = self.parameter((self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim))
 | 
			
		||||
                past_keys.append(past_key)
 | 
			
		||||
                past_values.append(past_value)
 | 
			
		||||
        else:
 | 
			
		||||
            past_keys = [None] * num_layers
 | 
			
		||||
            past_values = [None] * num_layers
 | 
			
		||||
        
 | 
			
		||||
        if input_layernorm_weights is None:
 | 
			
		||||
            assert post_attn_layernorm_weights is None
 | 
			
		||||
            input_layernorm_weights = []
 | 
			
		||||
            post_attn_layernorm_weights = []
 | 
			
		||||
            for i in range(num_layers):
 | 
			
		||||
                input_layernorm_weights.append(self.parameter((1, self.hidden_size,)))
 | 
			
		||||
                post_attn_layernorm_weights.append(self.parameter((1, self.hidden_size,)))
 | 
			
		||||
        else:
 | 
			
		||||
            input_layernorm_weights = [self.constant(w) for w in input_layernorm_weights]
 | 
			
		||||
            post_attn_layernorm_weights = [self.constant(w) for w in post_attn_layernorm_weights]
 | 
			
		||||
 | 
			
		||||
        hidden_states = input
 | 
			
		||||
        
 | 
			
		||||
        curr_key_values = []
 | 
			
		||||
        for i in range(num_layers):
 | 
			
		||||
            hidden_states, new_key_states, new_value_states = self.build_decoder(hidden_states=hidden_states,
 | 
			
		||||
                                                                                 attention_mask=attention_mask,
 | 
			
		||||
                                                                                 position_ids=position_ids,
 | 
			
		||||
                                                                                 input_layernorm_weight=input_layernorm_weights[i],
 | 
			
		||||
                                                                                 post_attention_layernorm_weight=post_attn_layernorm_weights[i],
 | 
			
		||||
                                                                                 past_key=past_keys[i],
 | 
			
		||||
                                                                                 past_value=past_values[i],)
 | 
			
		||||
            curr_key_values.append((new_key_states, new_value_states))
 | 
			
		||||
 | 
			
		||||
        
 | 
			
		||||
        # define outputs
 | 
			
		||||
        hidden_states = self.convert_to_fp16(hidden_states)
 | 
			
		||||
        
 | 
			
		||||
        for i in range(num_layers):
 | 
			
		||||
            new_key_states = self.convert_to_fp16(curr_key_values[i][0])
 | 
			
		||||
            new_value_states = self.convert_to_fp16(curr_key_values[i][1])
 | 
			
		||||
 | 
			
		||||
        with FileLock("decoder_compile.lock"):
 | 
			
		||||
            print("start compiling")
 | 
			
		||||
            self.compile()
 | 
			
		||||
 | 
			
		||||
    def repeat_kv(self, hidden_states, n_rep, transpose=False):
 | 
			
		||||
        if n_rep == 1:
 | 
			
		||||
            return hidden_states
 | 
			
		||||
        if not transpose:
 | 
			
		||||
            hidden_states = self.reshape(hidden_states, [self.batch_size, self.num_key_value_heads, 1, self.kv_seq_len, self.head_dim])
 | 
			
		||||
            hidden_states = self.broadcast(hidden_states, [self.batch_size, self.num_key_value_heads, n_rep, self.kv_seq_len, self.head_dim])
 | 
			
		||||
            hidden_states = self.reshape(hidden_states, [self.batch_size, n_rep*self.num_key_value_heads, self.kv_seq_len, self.head_dim])
 | 
			
		||||
        else:
 | 
			
		||||
            hidden_states = self.reshape(hidden_states, [self.batch_size, self.num_key_value_heads, 1, self.head_dim, self.kv_seq_len])
 | 
			
		||||
            hidden_states = self.broadcast(hidden_states, [self.batch_size, self.num_key_value_heads, n_rep, self.head_dim, self.kv_seq_len])
 | 
			
		||||
            hidden_states = self.reshape(hidden_states, [self.batch_size, n_rep*self.num_key_value_heads, self.head_dim, self.kv_seq_len])
 | 
			
		||||
        return hidden_states
 | 
			
		||||
 | 
			
		||||
    def build_decoder(self, hidden_states, attention_mask, position_ids,
 | 
			
		||||
                      input_layernorm_weight, post_attention_layernorm_weight,
 | 
			
		||||
                      past_key = None,
 | 
			
		||||
                      past_value = None):
 | 
			
		||||
 | 
			
		||||
        residual = hidden_states
 | 
			
		||||
 | 
			
		||||
        input_2d = self.reshape(hidden_states, (self.batch_size * self.seq_len, self.hidden_size))
 | 
			
		||||
 | 
			
		||||
        # input layernorm
 | 
			
		||||
        input_2d = self.convert_to_fp32(input_2d)
 | 
			
		||||
        # variance = self.reduce_mean(self.eltwise_mul(input_2d, input_2d), -1, keep_dims=True)
 | 
			
		||||
        variance = self.reduce_mean(self.power(input_2d, self.constant(np.array([[2]], dtype=np.float32))), -1, keep_dims=True)
 | 
			
		||||
        eps = self.constant(self.rms_norm_eps)
 | 
			
		||||
        input_2d = self.eltwise_div(input_2d, self.sqrt(self.eltwise_add(variance, eps)))
 | 
			
		||||
        # input_layernorm_weight = self.constant(input_layernorm_weight)
 | 
			
		||||
        input_layernorm_weight = self.convert_to_fp32(input_layernorm_weight)
 | 
			
		||||
        input_2d = self.eltwise_mul(input_layernorm_weight, input_2d)
 | 
			
		||||
        input_2d = self.convert_to_fp16(input_2d)
 | 
			
		||||
 | 
			
		||||
        # attention
 | 
			
		||||
        query_states = self.linear(input_2d, self.num_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=self.dtype)
 | 
			
		||||
        key_states = self.linear(input_2d, self.num_key_value_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=self.dtype)
 | 
			
		||||
        value_states = self.linear(input_2d, self.num_key_value_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=self.dtype)
 | 
			
		||||
        
 | 
			
		||||
        # cos = self.constant(self.cached_cos)
 | 
			
		||||
        # cos = self.unsqueeze(cos, axis=0)
 | 
			
		||||
 | 
			
		||||
        # sin = self.constant(self.cached_sin)
 | 
			
		||||
        # sin = self.unsqueeze(sin, axis=0)
 | 
			
		||||
 | 
			
		||||
        query_states = self.reshape(query_states, [self.batch_size, self.seq_len, self.num_heads, self.head_dim])
 | 
			
		||||
        key_states = self.reshape(key_states, [self.batch_size, self.seq_len, self.num_key_value_heads, self.head_dim])
 | 
			
		||||
        value_states = self.reshape(value_states, [self.batch_size, self.seq_len, self.num_key_value_heads, self.head_dim])
 | 
			
		||||
        
 | 
			
		||||
        query_states = self.transpose(query_states, [0, 2, 1, 3])
 | 
			
		||||
        key_states = self.transpose(key_states, [0, 2, 1, 3])
 | 
			
		||||
        if self.transpose_value:
 | 
			
		||||
            value_states = self.transpose(value_states, [0, 2, 3, 1])
 | 
			
		||||
        else:
 | 
			
		||||
            value_states = self.transpose(value_states, [0, 2, 1, 3])
 | 
			
		||||
        
 | 
			
		||||
        query_states, key_states = self.apply_rotary_pos_emb(query_states, key_states, self.cos, self.sin, position_ids)
 | 
			
		||||
        new_key_states = key_states
 | 
			
		||||
        new_value_states = value_states
 | 
			
		||||
        
 | 
			
		||||
 
 | 
			
		||||
        
 | 
			
		||||
        if self.mode == "decode":
 | 
			
		||||
            key_states = self.concat(past_key, key_states, axis=-2)
 | 
			
		||||
            if self.transpose_value:
 | 
			
		||||
                value_states = self.concat(past_value, value_states, axis=-1)
 | 
			
		||||
            else:
 | 
			
		||||
                value_states = self.concat(past_value, value_states, axis=-2)
 | 
			
		||||
        
 | 
			
		||||
        # repeat_kv cannot be implemented because Broadcast op is needed
 | 
			
		||||
        key_states = self.repeat_kv(key_states, self.num_key_value_groups)
 | 
			
		||||
        value_states = self.repeat_kv(value_states, self.num_key_value_groups, self.transpose_value)
 | 
			
		||||
        
 | 
			
		||||
        attn_weight = self.matmul(query_states, key_states, False, True) / (math.sqrt(self.head_dim))
 | 
			
		||||
        attn_weight = self.eltwise_add(attn_weight, attention_mask)
 | 
			
		||||
        attn_weight = self.convert_to_fp32(attn_weight)
 | 
			
		||||
        attn_weight = self.softmax(attn_weight, -1)
 | 
			
		||||
        attn_weight = self.convert_to_fp16(attn_weight)
 | 
			
		||||
        attn_output = self.matmul(attn_weight, value_states, False, self.transpose_value)
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
        attn_output = self.transpose(attn_output, [0, 2, 1, 3])
 | 
			
		||||
        attn_output = self.reshape(attn_output, [self.batch_size, self.seq_len, self.hidden_size])
 | 
			
		||||
        
 | 
			
		||||
        attn_output = self.linear(attn_output, self.hidden_size, self.hidden_size, bias=False, wt_dtype=self.dtype)
 | 
			
		||||
 | 
			
		||||
        hidden_states = self.eltwise_add(residual, attn_output)
 | 
			
		||||
 | 
			
		||||
        # Fully Connected
 | 
			
		||||
        residual = hidden_states
 | 
			
		||||
        # post_attention_layernorm forward
 | 
			
		||||
        
 | 
			
		||||
        hidden_states = self.convert_to_fp32(hidden_states)
 | 
			
		||||
        variance = self.reduce_mean(self.power(hidden_states, self.constant(np.array([[[2]]], dtype=np.float32))), -1, keep_dims=True)
 | 
			
		||||
        hidden_states = self.eltwise_div(hidden_states, self.sqrt(self.eltwise_add(variance, eps)))
 | 
			
		||||
        # post_attention_layernorm_weight = self.constant(post_attention_layernorm_weight)
 | 
			
		||||
        post_attention_layernorm_weight = self.convert_to_fp32(post_attention_layernorm_weight)
 | 
			
		||||
        hidden_states = self.eltwise_mul(post_attention_layernorm_weight, hidden_states)
 | 
			
		||||
        hidden_states = self.convert_to_fp16(hidden_states)
 | 
			
		||||
 | 
			
		||||
        # mlp
 | 
			
		||||
        mm1 = self.linear(hidden_states, self.intermediate_size, self.hidden_size,
 | 
			
		||||
                          bias=False, wt_dtype=self.dtype)
 | 
			
		||||
        mm2 = self.linear(hidden_states, self.intermediate_size, self.hidden_size,
 | 
			
		||||
                          bias=False, wt_dtype=self.dtype)  # type: ignore[attr-defined]
 | 
			
		||||
        mm1 = self.eltwise_mul(self.swish(mm1), mm2)  # type: ignore[attr-defined]
 | 
			
		||||
 | 
			
		||||
        hidden_states = self.linear(mm1, self.hidden_size, self.intermediate_size, bias=False, wt_dtype=self.dtype)
 | 
			
		||||
        
 | 
			
		||||
        hidden_states = self.eltwise_add(residual, hidden_states)
 | 
			
		||||
        hidden_states = self.convert_to_fp16(hidden_states)
 | 
			
		||||
 | 
			
		||||
        return hidden_states, new_key_states, new_value_states
 | 
			
		||||
    
 | 
			
		||||
    def rotate_half(self, x):
 | 
			
		||||
        x1 = self.slice(x, [0, 0, 0, 0], [self.batch_size, self.num_heads, self.seq_len, self.head_dim//2], )
 | 
			
		||||
        x2 = self.slice(x, [0, 0, 0, self.head_dim//2], [self.batch_size, self.num_heads, self.seq_len, self.head_dim])
 | 
			
		||||
        return self.concat(self.negative(x2), x1, axis=-1)
 | 
			
		||||
    
 | 
			
		||||
    def apply_rotary_pos_emb(self, q, k, cos, sin, position_ids):
 | 
			
		||||
        position_ids = self.squeeze(position_ids)
 | 
			
		||||
        cos = self.gather(cos, self.convert_to_int32(position_ids), self.constant(1), 0)
 | 
			
		||||
        sin = self.gather(sin, self.convert_to_int32(position_ids), self.constant(1), 0)
 | 
			
		||||
        cos = self.unsqueeze(cos, [1])
 | 
			
		||||
        sin = self.unsqueeze(sin, [1])
 | 
			
		||||
        
 | 
			
		||||
        q_embed = self.eltwise_add(self.eltwise_mul(q, cos), self.eltwise_mul(self.rotate_half(q), sin))
 | 
			
		||||
        k_embed = self.eltwise_add(self.eltwise_mul(k, cos), self.eltwise_mul(self.rotate_half(k), sin))
 | 
			
		||||
        
 | 
			
		||||
        return q_embed, k_embed
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
 | 
			
		||||
 | 
			
		||||
    def __init__(
 | 
			
		||||
        self,
 | 
			
		||||
        parameters: List[Tuple[torch.Tensor]],
 | 
			
		||||
        input_laynorm_weights: List[torch.Tensor],
 | 
			
		||||
        post_attn_layernorm_weights: List[torch.Tensor],
 | 
			
		||||
        layer_indexes : List[int],
 | 
			
		||||
        cached_cos,
 | 
			
		||||
        cached_sin,
 | 
			
		||||
        # rotary_emb,
 | 
			
		||||
        # batch_size: int,
 | 
			
		||||
        # seq_len: int,
 | 
			
		||||
        # hidden_size: int,
 | 
			
		||||
        num_heads: int,
 | 
			
		||||
        head_dim: int,
 | 
			
		||||
        num_key_value_heads: int,
 | 
			
		||||
        rms_norm_eps,
 | 
			
		||||
        intermediate_size,
 | 
			
		||||
        max_seq_len: int = 1024,
 | 
			
		||||
        transpose_value: bool = False,
 | 
			
		||||
    ):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
 | 
			
		||||
        op_parameters = []
 | 
			
		||||
        for w in parameters:
 | 
			
		||||
            if isinstance(w, tuple):  # from QuantizedLinear
 | 
			
		||||
                op_parameters.append((w[0].numpy(), w[1].numpy()))
 | 
			
		||||
            else:
 | 
			
		||||
                op_parameters.append(w.to(torch.float16).numpy())
 | 
			
		||||
        self.op_parameters = op_parameters
 | 
			
		||||
        self.op_id = str(uuid.uuid4())
 | 
			
		||||
        # self.layer_idx = layer_idx
 | 
			
		||||
        self.max_seq_len = max_seq_len
 | 
			
		||||
        self.transpose_value = transpose_value
 | 
			
		||||
        # self.rotary_emb = rotary_emb
 | 
			
		||||
        if isinstance(parameters[0], tuple):  # weight, scale from QuantizedLinear
 | 
			
		||||
            np_dtype = np.int8 if parameters[0][0].dtype == torch.int8 else np.uint8
 | 
			
		||||
            assert np_dtype == np.uint8
 | 
			
		||||
            assert parameters[0][1].dtype == torch.float16, parameters[0]
 | 
			
		||||
        else:  # FP16 Linear
 | 
			
		||||
            assert False, "should not be here"
 | 
			
		||||
            np_dtype = np.float16
 | 
			
		||||
        
 | 
			
		||||
        self.layer_indexes = layer_indexes
 | 
			
		||||
        self.num_layers_1 = len(self.layer_indexes) // 2
 | 
			
		||||
        self.num_layers_0 = len(self.layer_indexes) - self.num_layers_1
 | 
			
		||||
 | 
			
		||||
        assert self.num_layers_1 + self.num_layers_0 == len(input_laynorm_weights)
 | 
			
		||||
        assert self.num_layers_1 + self.num_layers_0 == len(post_attn_layernorm_weights)
 | 
			
		||||
 | 
			
		||||
        print("create dedcoder layer")
 | 
			
		||||
        self.backend_cls_decode_0 = LowBitLlamaMultiDecoderlayer([1, 1, num_heads*head_dim],
 | 
			
		||||
                                          input_layernorm_weights=input_laynorm_weights[:self.num_layers_0],
 | 
			
		||||
                                          post_attn_layernorm_weights=post_attn_layernorm_weights[:self.num_layers_0],
 | 
			
		||||
                                          cached_cos=cached_cos,
 | 
			
		||||
                                          cached_sin=cached_sin,
 | 
			
		||||
                                          num_heads=num_heads,
 | 
			
		||||
                                          num_key_value_heads=num_key_value_heads,
 | 
			
		||||
                                          num_layers=self.num_layers_0,
 | 
			
		||||
                                          max_seq_len=max_seq_len,
 | 
			
		||||
                                          rms_norm_eps=rms_norm_eps,
 | 
			
		||||
                                          intermediate_size=intermediate_size,
 | 
			
		||||
                                          mode="decode",
 | 
			
		||||
                                          transpose_value=self.transpose_value,
 | 
			
		||||
                                          dtype=np_dtype)
 | 
			
		||||
        self.backend_cls_decode_1 = LowBitLlamaMultiDecoderlayer([1, 1, num_heads*head_dim],
 | 
			
		||||
                                          input_layernorm_weights=input_laynorm_weights[self.num_layers_0:],
 | 
			
		||||
                                          post_attn_layernorm_weights=post_attn_layernorm_weights[self.num_layers_0:],
 | 
			
		||||
                                          cached_cos=cached_cos,
 | 
			
		||||
                                          cached_sin=cached_sin,
 | 
			
		||||
                                          num_heads=num_heads,
 | 
			
		||||
                                          num_key_value_heads=num_key_value_heads,
 | 
			
		||||
                                          num_layers=self.num_layers_1,
 | 
			
		||||
                                          max_seq_len=max_seq_len,
 | 
			
		||||
                                          rms_norm_eps=rms_norm_eps,
 | 
			
		||||
                                          intermediate_size=intermediate_size,
 | 
			
		||||
                                          mode="decode",
 | 
			
		||||
                                          transpose_value=self.transpose_value,
 | 
			
		||||
                                          dtype=np_dtype)
 | 
			
		||||
        print("created dedcoder layer")
 | 
			
		||||
 | 
			
		||||
        assert (self.num_layers_0 + self.num_layers_1) * 7 == len(op_parameters)
 | 
			
		||||
        
 | 
			
		||||
        self.backend_cls_decode_0.setWeights(3+self.num_layers_0*2, self.op_id, *op_parameters[:self.num_layers_0*7])
 | 
			
		||||
        backend_lib.run(self.backend_cls_decode_0._mm)
 | 
			
		||||
 | 
			
		||||
        print("first inference done")
 | 
			
		||||
 | 
			
		||||
        self.backend_cls_decode_1.setWeights(3+self.num_layers_1*2, self.op_id, *op_parameters[self.num_layers_0*7:])
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        print("weight setted")
 | 
			
		||||
        backend_lib.run(self.backend_cls_decode_1._mm)
 | 
			
		||||
 | 
			
		||||
        print("2nd inference done")
 | 
			
		||||
 | 
			
		||||
        self.kv_cache_c_parameter_handel = (None, None)
 | 
			
		||||
        self.kv_cache_parameters = None
 | 
			
		||||
        self.kv_cache_prefetched = False
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    def forward(self,
 | 
			
		||||
                hidden_states: torch.Tensor,
 | 
			
		||||
                attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
                position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
                past_key_value: Optional[Cache] = None,
 | 
			
		||||
                output_attentions: bool = False,
 | 
			
		||||
                use_cache: bool = False,
 | 
			
		||||
                cache_position: Optional[torch.LongTensor] = None,
 | 
			
		||||
                **kwargs,) -> torch.Tensor:
 | 
			
		||||
        """Torch module forward method.
 | 
			
		||||
 | 
			
		||||
        Args:
 | 
			
		||||
            x (torch.Tensor): Input tensor
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
            torch.Tensor: result
 | 
			
		||||
        """
 | 
			
		||||
        seq_len = hidden_states.shape[1]
 | 
			
		||||
        pad_len = self.max_seq_len + 1 - attention_mask.size(-1)
 | 
			
		||||
 | 
			
		||||
        pad_mask = (0, pad_len)
 | 
			
		||||
        padded_attention_mask = F.pad(attention_mask.to(torch.float16), pad_mask,
 | 
			
		||||
                                value=torch.finfo(torch.float16).min)
 | 
			
		||||
        padded_attention_mask[:,:,:,-1] = 0.0
 | 
			
		||||
        inputs = (hidden_states.to(torch.float16),
 | 
			
		||||
                    padded_attention_mask,
 | 
			
		||||
                    position_ids,
 | 
			
		||||
                    )
 | 
			
		||||
 | 
			
		||||
        if self.kv_cache_parameters is None:
 | 
			
		||||
            self.kv_cache_parameters = []
 | 
			
		||||
            self.kv_cache_c_parameter_handel = None
 | 
			
		||||
            self.kv_cache_prefetched = False
 | 
			
		||||
        else:
 | 
			
		||||
            # the case kv cache changed
 | 
			
		||||
            cached_prt = self.kv_cache_parameters[0].storage().data_ptr()
 | 
			
		||||
            current_ptr = past_key_value.key_cache[self.layer_indexes[0]].storage().data_ptr()
 | 
			
		||||
            if cached_prt != current_ptr:
 | 
			
		||||
                # print("kv cache changed")
 | 
			
		||||
                self.kv_cache_parameters = []
 | 
			
		||||
                self.kv_cache_c_parameter_handel = (None, None)
 | 
			
		||||
                self.kv_cache_prefetched = False
 | 
			
		||||
 | 
			
		||||
        if len(self.kv_cache_parameters) == 0:
 | 
			
		||||
            for idx in self.layer_indexes:
 | 
			
		||||
                past_key = past_key_value.key_cache[idx]
 | 
			
		||||
                past_value = past_key_value.value_cache[idx]
 | 
			
		||||
 | 
			
		||||
                assert past_key.dtype == torch.float16, f"past_key dtype is {past_key.dtype}"
 | 
			
		||||
 | 
			
		||||
                new_size = (past_key.size(0),
 | 
			
		||||
                            past_key.size(1),
 | 
			
		||||
                            self.max_seq_len,
 | 
			
		||||
                            past_key.size(3))
 | 
			
		||||
                past_key = past_key.as_strided(new_size, past_key.stride(), storage_offset=0)
 | 
			
		||||
                assert past_key.is_contiguous()
 | 
			
		||||
                past_value = past_value.as_strided(new_size, past_value.stride(), storage_offset=0)
 | 
			
		||||
                if self.transpose_value:
 | 
			
		||||
                    past_value = past_value.transpose(-1, -2)
 | 
			
		||||
                assert past_value.is_contiguous()
 | 
			
		||||
 | 
			
		||||
                self.kv_cache_parameters.append(past_key)
 | 
			
		||||
                self.kv_cache_parameters.append(past_value)
 | 
			
		||||
            handle_0 = self.backend_cls_decode_0.create_parameters([p.numpy() for p in self.kv_cache_parameters[:self.num_layers_0*2]])
 | 
			
		||||
            handle_1 = self.backend_cls_decode_1.create_parameters([p.numpy() for p in self.kv_cache_parameters[self.num_layers_0*2:]])
 | 
			
		||||
            assert len(self.kv_cache_parameters) == (self.num_layers_0 + self.num_layers_1) * 2
 | 
			
		||||
            self.kv_cache_c_parameter_handel = (handle_0, handle_1)
 | 
			
		||||
 | 
			
		||||
        x_np = [elem.to(torch.float16).numpy() for elem in inputs]
 | 
			
		||||
 | 
			
		||||
        key_value_states = []
 | 
			
		||||
 | 
			
		||||
        with record_function(f"npu_factory"):
 | 
			
		||||
            if not self.kv_cache_prefetched:
 | 
			
		||||
                self.backend_cls_decode_0.load_wt_fn(len(inputs), self.backend_cls_decode_0._mm, self.kv_cache_c_parameter_handel[0])
 | 
			
		||||
                self.backend_cls_decode_1.load_wt_fn(len(inputs), self.backend_cls_decode_1._mm, self.kv_cache_c_parameter_handel[1])
 | 
			
		||||
 | 
			
		||||
            models_ptr = (ctypes.POINTER(ctypes.c_char) * 2)(self.backend_cls_decode_0._mm, self.backend_cls_decode_1._mm)
 | 
			
		||||
            inputs_ptr = (ctypes.c_void_p * 3)(x_np[0].ctypes.data_as(ctypes.c_void_p), x_np[1].ctypes.data_as(ctypes.c_void_p), x_np[2].ctypes.data_as(ctypes.c_void_p))
 | 
			
		||||
 | 
			
		||||
            backend_lib.run_decoders(models_ptr, inputs_ptr, 2, 3)
 | 
			
		||||
 | 
			
		||||
        for i in range(1, len(self.backend_cls_decode_0.torch_out)):
 | 
			
		||||
            key_value_states.append(self.backend_cls_decode_0.torch_out[i])
 | 
			
		||||
        
 | 
			
		||||
        for i in range(1, len(self.backend_cls_decode_1.torch_out)):
 | 
			
		||||
            key_value_states.append(self.backend_cls_decode_1.torch_out[i])
 | 
			
		||||
 | 
			
		||||
        hidden_states = self.backend_cls_decode_1.torch_out[0]
 | 
			
		||||
        
 | 
			
		||||
        cache_kwargs = {"cache_position": cache_position, "max_seq_len":self.max_seq_len, "transpose": self.transpose_value}
 | 
			
		||||
        for i in range(len(self.layer_indexes)):
 | 
			
		||||
            key_states, value_states = past_key_value.update(key_value_states[2*i],
 | 
			
		||||
                                                             key_value_states[2*i+1],
 | 
			
		||||
                                                             self.layer_indexes[i], cache_kwargs)
 | 
			
		||||
        
 | 
			
		||||
        self.backend_cls_decode_0.load_wt_fn(len(inputs), self.backend_cls_decode_0._mm, self.kv_cache_c_parameter_handel[0])
 | 
			
		||||
        self.backend_cls_decode_1.load_wt_fn(len(inputs), self.backend_cls_decode_1._mm, self.kv_cache_c_parameter_handel[1])
 | 
			
		||||
        self.kv_cache_prefetched = True
 | 
			
		||||
 | 
			
		||||
        outputs = (hidden_states,)
 | 
			
		||||
        outputs += (past_key_value,)
 | 
			
		||||
        return outputs
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
 | 
			
		||||
    """LLAMA MLP operation NPU backend."""
 | 
			
		||||
 | 
			
		||||
    def __init__(
 | 
			
		||||
        self,
 | 
			
		||||
        parameters: List[torch.Tensor],
 | 
			
		||||
        cached_cos,
 | 
			
		||||
        cached_sin,
 | 
			
		||||
        layer_norm_0,
 | 
			
		||||
        layer_norm_1,
 | 
			
		||||
        num_heads: int,
 | 
			
		||||
        num_key_value_heads: int,
 | 
			
		||||
        layer_idx: int,
 | 
			
		||||
        rms_norm_eps,
 | 
			
		||||
        intermediate_size,
 | 
			
		||||
        max_seq_len: int = 128,
 | 
			
		||||
        transpose_value: bool = False,
 | 
			
		||||
    ):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.op_parameters = parameters
 | 
			
		||||
        self.op_id = str(uuid.uuid4())
 | 
			
		||||
        self.layer_idx = layer_idx
 | 
			
		||||
        self.max_seq_len = max_seq_len
 | 
			
		||||
        self.transpose_value = transpose_value
 | 
			
		||||
        # self.rotary_emb = rotary_emb
 | 
			
		||||
        if isinstance(parameters[0], tuple):  # weight, scale from QuantizedLinear
 | 
			
		||||
            np_dtype = np.int8 if parameters[0][0].dtype == torch.int8 else np.uint8
 | 
			
		||||
        else:  # FP16 Linear
 | 
			
		||||
            np_dtype = np.float16
 | 
			
		||||
 | 
			
		||||
        self.backend_cls_prefill = partial(LowBitLlamaMultiDecoderlayer,
 | 
			
		||||
                                           num_heads=num_heads,
 | 
			
		||||
                                           num_key_value_heads=num_key_value_heads,
 | 
			
		||||
                                           num_layers=1,
 | 
			
		||||
                                           cached_cos=cached_cos,
 | 
			
		||||
                                           cached_sin=cached_sin,
 | 
			
		||||
                                           input_layernorm_weights=None,
 | 
			
		||||
                                           post_attn_layernorm_weights=None,
 | 
			
		||||
                                           max_seq_len=max_seq_len,
 | 
			
		||||
                                           rms_norm_eps=rms_norm_eps,
 | 
			
		||||
                                           intermediate_size=intermediate_size,
 | 
			
		||||
                                           mode="prefill",
 | 
			
		||||
                                           transpose_value=self.transpose_value,
 | 
			
		||||
                                           dtype=np_dtype)
 | 
			
		||||
        self.layer_norm_0 = layer_norm_0
 | 
			
		||||
        self.layer_norm_1 = layer_norm_1
 | 
			
		||||
 | 
			
		||||
    def forward(self,
 | 
			
		||||
                hidden_states: torch.Tensor,
 | 
			
		||||
                attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
                position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
                past_key_value: Optional[Cache] = None,
 | 
			
		||||
                output_attentions: bool = False,
 | 
			
		||||
                use_cache: bool = False,
 | 
			
		||||
                cache_position: Optional[torch.LongTensor] = None,
 | 
			
		||||
                **kwargs,) -> torch.Tensor:
 | 
			
		||||
        """Torch module forward method.
 | 
			
		||||
 | 
			
		||||
        Args:
 | 
			
		||||
            x (torch.Tensor): Input tensor
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
            torch.Tensor: result
 | 
			
		||||
        """
 | 
			
		||||
        assert not output_attentions
 | 
			
		||||
        # assert cache_position is None
 | 
			
		||||
        # assert use_cache
 | 
			
		||||
 | 
			
		||||
        seq_len = hidden_states.shape[1]
 | 
			
		||||
 | 
			
		||||
        backend_cls = self.backend_cls_prefill
 | 
			
		||||
        inputs = (hidden_states.to(torch.float16), attention_mask, position_ids)
 | 
			
		||||
        inputs += (self.layer_norm_0, self.layer_norm_1)
 | 
			
		||||
        # print("start run_model prefill")
 | 
			
		||||
        hidden_states, past_key, past_value = run_model(inputs, self.op_parameters, backend_cls, self.op_id, replica=1)
 | 
			
		||||
        # print("end run model prefill")
 | 
			
		||||
        cache_kwargs = {"cache_position": cache_position, "max_seq_len":self.max_seq_len, "transpose": self.transpose_value}
 | 
			
		||||
        key_states, value_states = past_key_value.update(past_key, past_value, self.layer_idx, cache_kwargs)
 | 
			
		||||
 | 
			
		||||
        outputs = (hidden_states,)
 | 
			
		||||
        outputs += (past_key_value,)
 | 
			
		||||
        return outputs
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for npu model')
 | 
			
		||||
    parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
 | 
			
		||||
                        help='The huggingface repo id for the Llama2 model to be downloaded'
 | 
			
		||||
                             ', or the path to the huggingface checkpoint folder')
 | 
			
		||||
    parser.add_argument('--prompt', type=str, default="Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun",
 | 
			
		||||
                        help='Prompt to infer')
 | 
			
		||||
    parser.add_argument('--n-predict', type=int, default=32,
 | 
			
		||||
                        help='Max tokens to predict')
 | 
			
		||||
    parser.add_argument('--max-seq-len', type=int, default=1024)
 | 
			
		||||
    parser.add_argument('--transpose-value-cache', action="store_true", default=False)
 | 
			
		||||
    parser = argparse.ArgumentParser(
 | 
			
		||||
        description="Predict Tokens using `generate()` API for npu model"
 | 
			
		||||
    )
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--repo-id-or-model-path",
 | 
			
		||||
        type=str,
 | 
			
		||||
        default="meta-llama/Llama-2-7b-chat-hf",
 | 
			
		||||
        help="The huggingface repo id for the Llama2 model to be downloaded"
 | 
			
		||||
        ", or the path to the huggingface checkpoint folder",
 | 
			
		||||
    )
 | 
			
		||||
    parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
 | 
			
		||||
    parser.add_argument("--max-output-len", type=int, default=1024)
 | 
			
		||||
    parser.add_argument("--max-prompt-len", type=int, default=128)
 | 
			
		||||
    parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
 | 
			
		||||
    parser.add_argument("--intra-pp", type=int, default=2)
 | 
			
		||||
    parser.add_argument("--inter-pp", type=int, default=2)
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
 | 
			
		||||
    os.environ['MASTER_ADDR'] = '127.0.0.1'
 | 
			
		||||
    os.environ['MASTER_PORT'] = '29501'
 | 
			
		||||
 | 
			
		||||
    dist.init_process_group()
 | 
			
		||||
    my_rank = dist.get_rank()
 | 
			
		||||
    my_size = dist.get_world_size()
 | 
			
		||||
    logger.info(f"rank: {my_rank}, size: {my_size}")
 | 
			
		||||
 | 
			
		||||
    model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16,
 | 
			
		||||
                                                 trust_remote_code=True, attn_implementation="eager",
 | 
			
		||||
                                                 load_in_low_bit="sym_int4", pipeline_parallel_stages=2)
 | 
			
		||||
 | 
			
		||||
    if my_rank == 0:
 | 
			
		||||
        print(model)
 | 
			
		||||
    dist.barrier()
 | 
			
		||||
 | 
			
		||||
    if my_rank == 1:
 | 
			
		||||
        print(model)
 | 
			
		||||
 | 
			
		||||
    layer_start = model.layer_start
 | 
			
		||||
    layer_end = model.layer_end
 | 
			
		||||
    num_layers = model.num_layers
 | 
			
		||||
    num_heads = model.model.layers[layer_start].self_attn.num_heads
 | 
			
		||||
    num_key_value_heads = model.model.layers[layer_start].self_attn.num_key_value_heads
 | 
			
		||||
    head_dim = model.model.layers[layer_start].self_attn.head_dim
 | 
			
		||||
    rms_norm_eps = model.config.rms_norm_eps
 | 
			
		||||
    intermediate_size = model.config.intermediate_size
 | 
			
		||||
    deocderlayers = []
 | 
			
		||||
    layer_weights = []
 | 
			
		||||
    input_layer_norm_weights = []
 | 
			
		||||
    post_attn_layernorm_weights = []
 | 
			
		||||
    layer_indexs = range(layer_start, layer_end)
 | 
			
		||||
    for layer_idx in layer_indexs:
 | 
			
		||||
        curr_layer = model.model.layers[layer_idx]
 | 
			
		||||
        attn_layer = curr_layer.self_attn
 | 
			
		||||
        mlp_layer = curr_layer.mlp
 | 
			
		||||
 | 
			
		||||
        weights = [
 | 
			
		||||
            (attn_layer.q_proj.weight, attn_layer.q_proj.scale),
 | 
			
		||||
            (attn_layer.k_proj.weight, attn_layer.k_proj.scale),
 | 
			
		||||
            (attn_layer.v_proj.weight, attn_layer.v_proj.scale),
 | 
			
		||||
            (attn_layer.o_proj.weight, attn_layer.o_proj.scale),
 | 
			
		||||
            (mlp_layer.gate_proj.weight, mlp_layer.gate_proj.scale),
 | 
			
		||||
            (mlp_layer.up_proj.weight, mlp_layer.up_proj.scale),
 | 
			
		||||
            (mlp_layer.down_proj.weight, mlp_layer.down_proj.scale)]
 | 
			
		||||
 | 
			
		||||
        cached_cos = curr_layer.self_attn.rotary_emb.cos_cached.to(torch.float16)
 | 
			
		||||
        cached_sin = curr_layer.self_attn.rotary_emb.sin_cached.to(torch.float16)
 | 
			
		||||
 | 
			
		||||
        layer_norm_0 = curr_layer.input_layernorm.weight.to(torch.float16)
 | 
			
		||||
        layer_norm_1 = curr_layer.post_attention_layernorm.weight.to(torch.float16)
 | 
			
		||||
 | 
			
		||||
        new_decoderlayer = FusedLlamaLowBitDecoderlayer(weights,
 | 
			
		||||
                                            num_heads=num_heads,
 | 
			
		||||
                                            num_key_value_heads=num_key_value_heads,
 | 
			
		||||
                                            cached_cos=cached_cos,
 | 
			
		||||
                                            cached_sin=cached_sin,
 | 
			
		||||
                                            layer_norm_0=layer_norm_0,
 | 
			
		||||
                                            layer_norm_1=layer_norm_1,
 | 
			
		||||
                                            layer_idx=layer_idx,
 | 
			
		||||
                                            rms_norm_eps=rms_norm_eps,
 | 
			
		||||
                                            intermediate_size=intermediate_size,
 | 
			
		||||
                                            max_seq_len=args.max_seq_len,
 | 
			
		||||
                                            transpose_value=args.transpose_value_cache)
 | 
			
		||||
        
 | 
			
		||||
        layer_weights.extend(weights)
 | 
			
		||||
        input_layer_norm_weights.append(layer_norm_0)
 | 
			
		||||
        post_attn_layernorm_weights.append(layer_norm_1)
 | 
			
		||||
        model.model.layers[layer_idx] = new_decoderlayer
 | 
			
		||||
 | 
			
		||||
    multi_decoder = FusedLlamaLowBitMultiDecoderlayer(
 | 
			
		||||
        parameters=layer_weights,
 | 
			
		||||
        input_laynorm_weights=input_layer_norm_weights,
 | 
			
		||||
        post_attn_layernorm_weights=post_attn_layernorm_weights,
 | 
			
		||||
        layer_indexes=layer_indexs,
 | 
			
		||||
        cached_cos=cached_cos,
 | 
			
		||||
        cached_sin=cached_sin,
 | 
			
		||||
        num_heads=num_heads,
 | 
			
		||||
        head_dim=head_dim,
 | 
			
		||||
        num_key_value_heads=num_key_value_heads,
 | 
			
		||||
        rms_norm_eps=rms_norm_eps,
 | 
			
		||||
        intermediate_size=intermediate_size,
 | 
			
		||||
        max_seq_len=args.max_seq_len,
 | 
			
		||||
        transpose_value=args.transpose_value_cache
 | 
			
		||||
    model = AutoModelForCausalLM.from_pretrained(
 | 
			
		||||
        model_path,
 | 
			
		||||
        torch_dtype=torch.float16,
 | 
			
		||||
        trust_remote_code=True,
 | 
			
		||||
        attn_implementation="eager",
 | 
			
		||||
        load_in_low_bit="sym_int4",
 | 
			
		||||
        enable_mp=True,
 | 
			
		||||
        max_output_len=args.max_output_len,
 | 
			
		||||
        max_prompt_len=args.max_prompt_len,
 | 
			
		||||
        intra_pp=args.intra_pp,
 | 
			
		||||
        inter_pp=args.inter_pp,
 | 
			
		||||
        transpose_value_cache=not args.disable_transpose_value_cache,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    model.model.multi_decoder = multi_decoder
 | 
			
		||||
    print(model)
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
 | 
			
		||||
    prompts = [
 | 
			
		||||
        "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun",
 | 
			
		||||
        "Once upon a time, there existed",
 | 
			
		||||
        "Once upon a time, there existed a little girl who liked to have adventures.",
 | 
			
		||||
    ]
 | 
			
		||||
 | 
			
		||||
    print("-" * 80)
 | 
			
		||||
    print("done")
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        input_ids = tokenizer.encode(args.prompt, return_tensors="pt")
 | 
			
		||||
        print("finish to load")
 | 
			
		||||
        print('input length:', len(input_ids[0]))
 | 
			
		||||
        for i in range(3):
 | 
			
		||||
        for i in range(5):
 | 
			
		||||
            import random
 | 
			
		||||
            idx = random.randint(0, 2)
 | 
			
		||||
            prompt = prompts[idx]
 | 
			
		||||
            _input_ids = tokenizer.encode(prompt, return_tensors="pt")
 | 
			
		||||
            print("input length:", len(_input_ids[0]))
 | 
			
		||||
            st = time.time()
 | 
			
		||||
            output = model.generate(input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict)
 | 
			
		||||
            output = model.generate(
 | 
			
		||||
                _input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict
 | 
			
		||||
            )
 | 
			
		||||
            end = time.time()
 | 
			
		||||
            if my_rank == 0:
 | 
			
		||||
                print(f"First token cost: {model.first_token_time} s, rest tokens cost average: {model.rest_cost_mean} s")
 | 
			
		||||
                print(f'Inference time: {end-st} s')
 | 
			
		||||
                output_str = tokenizer.decode(output[0], skip_special_tokens=False)
 | 
			
		||||
                print('-'*20, 'Prompt', '-'*20)
 | 
			
		||||
                print(args.prompt)
 | 
			
		||||
                print('-'*20, 'Output', '-'*20)
 | 
			
		||||
                print(output_str)
 | 
			
		||||
            print(f"Inference time: {end-st} s")
 | 
			
		||||
            input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
 | 
			
		||||
            print("-" * 20, "Input", "-" * 20)
 | 
			
		||||
            print(input_str)
 | 
			
		||||
            output_str = tokenizer.decode(output[0], skip_special_tokens=False)
 | 
			
		||||
            print("-" * 20, "Output", "-" * 20)
 | 
			
		||||
            print(output_str)
 | 
			
		||||
 | 
			
		||||
    print("-" * 80)
 | 
			
		||||
    print("done")
 | 
			
		||||
    print("success shut down")
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -38,7 +38,7 @@ def patch_flash_attn_import(filename: str) -> List[str]:
 | 
			
		|||
    return imports
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def ignore_argument(kwargs: dict, key: 'str'):
 | 
			
		||||
def ignore_argument(kwargs: dict, key: "str"):
 | 
			
		||||
    arg = kwargs.pop(key, None)
 | 
			
		||||
    if arg is not None:
 | 
			
		||||
        warnings.warn(f"argument `{key}={arg}` will be ignored")
 | 
			
		||||
| 
						 | 
				
			
			@ -46,10 +46,11 @@ def ignore_argument(kwargs: dict, key: 'str'):
 | 
			
		|||
 | 
			
		||||
def save_low_bit(self, model_dir: str, *args, **kwargs):
 | 
			
		||||
    origin_device = self.device
 | 
			
		||||
    kwargs['safe_serialization'] = False
 | 
			
		||||
    kwargs["safe_serialization"] = False
 | 
			
		||||
    self.save_pretrained(model_dir, *args, **kwargs)
 | 
			
		||||
    import json
 | 
			
		||||
    import os
 | 
			
		||||
 | 
			
		||||
    # We conveniently save all the keys of the model to have them on hand,
 | 
			
		||||
    # so that when using 'low_cpumem load',
 | 
			
		||||
    # it's not necessary to load the entire model to extract its keys
 | 
			
		||||
| 
						 | 
				
			
			@ -57,7 +58,7 @@ def save_low_bit(self, model_dir: str, *args, **kwargs):
 | 
			
		|||
    load_keys = {"all_checkpoint_keys": list(self.state_dict().keys())}
 | 
			
		||||
    with open(os.path.join(model_dir, "load_keys.json"), "w") as json_file:
 | 
			
		||||
        json.dump(load_keys, json_file)
 | 
			
		||||
    if origin_device != 'cpu':
 | 
			
		||||
    if origin_device != "cpu":
 | 
			
		||||
        self.to(origin_device)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -66,9 +67,7 @@ class _BaseAutoModelClass:
 | 
			
		|||
 | 
			
		||||
    @classmethod
 | 
			
		||||
    @patch("transformers.dynamic_module_utils.get_imports", patch_flash_attn_import)
 | 
			
		||||
    def from_pretrained(cls,
 | 
			
		||||
                        *args,
 | 
			
		||||
                        **kwargs):
 | 
			
		||||
    def from_pretrained(cls, *args, **kwargs):
 | 
			
		||||
        """
 | 
			
		||||
        Load a model from a directory or the HF Hub. Use load_in_low_bit parameter to convert
 | 
			
		||||
        model to low-bit format, like int4 and int8.
 | 
			
		||||
| 
						 | 
				
			
			@ -80,23 +79,24 @@ class _BaseAutoModelClass:
 | 
			
		|||
                                Relevant low bit optimizations will be applied to the model.
 | 
			
		||||
        :return: a model instance
 | 
			
		||||
        """
 | 
			
		||||
        if kwargs.get('device_map', None) not in [None, 'cpu', 'auto']:
 | 
			
		||||
        if kwargs.get("device_map", None) not in [None, "cpu", "auto"]:
 | 
			
		||||
            warnings.warn("`device_map` will be ignored")
 | 
			
		||||
        kwargs['device_map'] = 'cpu'
 | 
			
		||||
        kwargs["device_map"] = "cpu"
 | 
			
		||||
 | 
			
		||||
        if kwargs.get('torch_dtype', None) not in [None, 'auto', torch.float, torch.float16]:
 | 
			
		||||
        if kwargs.get("torch_dtype", None) not in [None, "auto", torch.float, torch.float16]:
 | 
			
		||||
            warnings.warn("`torch_dtype` will be ignored, `torch.float` will be used")
 | 
			
		||||
            kwargs['torch_dtype'] = torch.float32
 | 
			
		||||
            kwargs["torch_dtype"] = torch.float32
 | 
			
		||||
 | 
			
		||||
        low_bit = kwargs.pop('load_in_low_bit', 'sym_int4')
 | 
			
		||||
        low_bit = kwargs.pop("load_in_low_bit", "sym_int4")
 | 
			
		||||
        qtype_map = {
 | 
			
		||||
            'sym_int4': "sym_int4_rtn",
 | 
			
		||||
            'sym_int8': "sym_int8_rtn",
 | 
			
		||||
            "sym_int4": "sym_int4_rtn",
 | 
			
		||||
            "sym_int8": "sym_int8_rtn",
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        invalidInputError(low_bit in qtype_map.keys(),
 | 
			
		||||
                          f"unsupported low_bit: {low_bit}, "
 | 
			
		||||
                          f"only {list(qtype_map.keys())} are supported")
 | 
			
		||||
        invalidInputError(
 | 
			
		||||
            low_bit in qtype_map.keys(),
 | 
			
		||||
            f"unsupported low_bit: {low_bit}, " f"only {list(qtype_map.keys())} are supported",
 | 
			
		||||
        )
 | 
			
		||||
        qtype = qtype_map[low_bit]
 | 
			
		||||
 | 
			
		||||
        kwargs["low_cpu_mem_usage"] = True
 | 
			
		||||
| 
						 | 
				
			
			@ -114,65 +114,82 @@ class _BaseAutoModelClass:
 | 
			
		|||
        ignore_argument(kwargs, "modules_to_not_convert")
 | 
			
		||||
        ignore_argument(kwargs, "quantization_config")
 | 
			
		||||
        ignore_argument(kwargs, "speculative")
 | 
			
		||||
        pipeline_parallel_stages = kwargs.pop("pipeline_parallel_stages", 1)
 | 
			
		||||
        ignore_argument(kwargs, "pipeline_parallel_stages")
 | 
			
		||||
        enable_mp = kwargs.pop("enable_mp", False)
 | 
			
		||||
        max_output_len = kwargs.pop("max_output_len", 1024)
 | 
			
		||||
        max_prompt_len = kwargs.pop("max_prompt_len", max_output_len)
 | 
			
		||||
        inter_pp = kwargs.pop("inter_pp", 2)
 | 
			
		||||
        intra_pp = kwargs.pop("intra_pp", 2)
 | 
			
		||||
        transpose_value_cache = kwargs.pop("transpose_value_cache", True)
 | 
			
		||||
 | 
			
		||||
        _args = copy.deepcopy(args)
 | 
			
		||||
        _kwargs = copy.deepcopy(kwargs)
 | 
			
		||||
        try:
 | 
			
		||||
            # To handle the input CUDA setting (such as 'device_map={"":0}'), ignore it
 | 
			
		||||
            kwargs.pop('device_map', None)
 | 
			
		||||
            kwargs.pop("device_map", None)
 | 
			
		||||
            model = cls.HF_Model.from_pretrained(*args, **kwargs)
 | 
			
		||||
        except NotImplementedError:
 | 
			
		||||
            logger.info("Failed to load models with `low_cpu_mem_usage` specified, "
 | 
			
		||||
                        "will fall to traditional load method with higher memory consumption.")
 | 
			
		||||
            logger.info(
 | 
			
		||||
                "Failed to load models with `low_cpu_mem_usage` specified, "
 | 
			
		||||
                "will fall to traditional load method with higher memory consumption."
 | 
			
		||||
            )
 | 
			
		||||
            _kwargs["low_cpu_mem_usage"] = False
 | 
			
		||||
            model = cls.HF_Model.from_pretrained(*_args, **_kwargs)
 | 
			
		||||
            model.config.update({"bigdl_lcmu_enabled": False})
 | 
			
		||||
 | 
			
		||||
        logger.info(f"Converting model, it may takes up to several minutes ...")
 | 
			
		||||
 | 
			
		||||
        if pipeline_parallel_stages > 1:
 | 
			
		||||
            invalidInputError(torch.distributed.get_world_size() == pipeline_parallel_stages,
 | 
			
		||||
                              "Please make sure world size is same as `pipeline_parallel_stages`")
 | 
			
		||||
            kwargs['torch_dtype'] = torch.float16
 | 
			
		||||
            from .npu_models.pipeline_parallel import pipeline_parallel, pipeline_parallel_generate
 | 
			
		||||
            model = pipeline_parallel(model, pipeline_parallel_stages,
 | 
			
		||||
                                      kwargs["torch_dtype"], device="cpu")
 | 
			
		||||
 | 
			
		||||
            # add pipeline_parallel_generate to pretrained model dynamically
 | 
			
		||||
            model.pipeline_parallel_generate = types.MethodType(pipeline_parallel_generate,
 | 
			
		||||
                                                                model)
 | 
			
		||||
 | 
			
		||||
        from intel_npu_acceleration_library.compiler import create_npu_kernels
 | 
			
		||||
        with torch.no_grad():
 | 
			
		||||
            optimize_llm(model)
 | 
			
		||||
            if pipeline_parallel_stages == 1:
 | 
			
		||||
                cls.load_convert(qtype, model, 'cpu', *args, **kwargs)
 | 
			
		||||
 | 
			
		||||
        if enable_mp:
 | 
			
		||||
            invalidInputError(
 | 
			
		||||
                max_prompt_len < max_output_len,
 | 
			
		||||
                (
 | 
			
		||||
                    f"max_prompt_len ({max_prompt_len}) should be less"
 | 
			
		||||
                    " than max_output_len ({max_output_len})"
 | 
			
		||||
                ),
 | 
			
		||||
            )
 | 
			
		||||
            from ipex_llm.transformers.npu_models.convert_mp import optimize_llm
 | 
			
		||||
 | 
			
		||||
            with torch.no_grad():
 | 
			
		||||
                cls.load_convert(qtype, model, "cpu", *args, **kwargs)
 | 
			
		||||
                create_npu_kernels(model)
 | 
			
		||||
            else:
 | 
			
		||||
                cls.load_convert(qtype, model.model, 'cpu', *args, **kwargs)
 | 
			
		||||
                create_npu_kernels(model.model)
 | 
			
		||||
                optimize_llm_post(model)
 | 
			
		||||
        model = model.eval()
 | 
			
		||||
            model = model.eval()
 | 
			
		||||
            logger.info(f"Finish to convert model")
 | 
			
		||||
            model.config.update({"bigdl_transformers_low_bit": qtype})
 | 
			
		||||
            model.share_memory()
 | 
			
		||||
 | 
			
		||||
        logger.info(f"Finish to convert model")
 | 
			
		||||
 | 
			
		||||
        model.config.update({"bigdl_transformers_low_bit": qtype})
 | 
			
		||||
 | 
			
		||||
        # add save_low_bit to pretrained model dynamically
 | 
			
		||||
        model.save_low_bit = types.MethodType(save_low_bit, model)
 | 
			
		||||
            optimize_llm(
 | 
			
		||||
                model,
 | 
			
		||||
                max_output_len=max_output_len,
 | 
			
		||||
                max_prompt_len=max_prompt_len,
 | 
			
		||||
                inter_pp=inter_pp,
 | 
			
		||||
                intra_pp=intra_pp,
 | 
			
		||||
                transpose_value_cache=transpose_value_cache,
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            from ipex_llm.transformers.npu_models.convert import optimize_llm
 | 
			
		||||
            optimize_llm(model)
 | 
			
		||||
            with torch.no_grad():
 | 
			
		||||
                cls.load_convert(qtype, model, "cpu", *args, **kwargs)
 | 
			
		||||
                create_npu_kernels(model)
 | 
			
		||||
            model = model.eval()
 | 
			
		||||
            logger.info(f"Finish to convert model")
 | 
			
		||||
            model.config.update({"bigdl_transformers_low_bit": qtype})
 | 
			
		||||
            # add save_low_bit to pretrained model dynamically
 | 
			
		||||
            model.save_low_bit = types.MethodType(save_low_bit, model)
 | 
			
		||||
 | 
			
		||||
        return model
 | 
			
		||||
 | 
			
		||||
    @classmethod
 | 
			
		||||
    def load_convert(cls, q_k, optimize_model, device, *arg, **kwarg):
 | 
			
		||||
        from ipex_llm.transformers.npu_models.convert import replace_with_QuantizedLinear
 | 
			
		||||
 | 
			
		||||
        replace_with_QuantizedLinear(optimize_model, q_k, device=device)
 | 
			
		||||
 | 
			
		||||
    @classmethod
 | 
			
		||||
    @patch("transformers.dynamic_module_utils.get_imports", patch_flash_attn_import)
 | 
			
		||||
    def load_low_bit(cls, pretrained_model_name_or_path: str, *model_args, **kwargs):
 | 
			
		||||
        if kwargs.pop('torch_dtype', None) not in [None, 'auto', torch.float]:
 | 
			
		||||
        if kwargs.pop("torch_dtype", None) not in [None, "auto", torch.float]:
 | 
			
		||||
            warnings.warn("`torch_dtype` will be ignored, `torch.float` will be used")
 | 
			
		||||
 | 
			
		||||
        # ignore following arguments
 | 
			
		||||
| 
						 | 
				
			
			@ -187,13 +204,18 @@ class _BaseAutoModelClass:
 | 
			
		|||
 | 
			
		||||
        from transformers.models.auto.configuration_auto import AutoConfig
 | 
			
		||||
        from transformers.modeling_utils import no_init_weights, get_state_dict_dtype
 | 
			
		||||
        from transformers.dynamic_module_utils import resolve_trust_remote_code, \
 | 
			
		||||
            get_class_from_dynamic_module
 | 
			
		||||
        from transformers.dynamic_module_utils import (
 | 
			
		||||
            resolve_trust_remote_code,
 | 
			
		||||
            get_class_from_dynamic_module,
 | 
			
		||||
        )
 | 
			
		||||
        from transformers.models.auto.auto_factory import _get_model_class
 | 
			
		||||
        from transformers.utils.generic import ContextManagers
 | 
			
		||||
        from transformers.generation.configuration_utils import GenerationConfig
 | 
			
		||||
        from ipex_llm.transformers.utils import extract_local_archive_file, get_local_shard_files, \
 | 
			
		||||
            load_state_dict
 | 
			
		||||
        from ipex_llm.transformers.utils import (
 | 
			
		||||
            extract_local_archive_file,
 | 
			
		||||
            get_local_shard_files,
 | 
			
		||||
            load_state_dict,
 | 
			
		||||
        )
 | 
			
		||||
        from accelerate.big_modeling import init_empty_weights
 | 
			
		||||
 | 
			
		||||
        trust_remote_code = kwargs.pop("trust_remote_code", None)
 | 
			
		||||
| 
						 | 
				
			
			@ -222,14 +244,18 @@ class _BaseAutoModelClass:
 | 
			
		|||
        qtype = config_dict.pop("bigdl_transformers_low_bit", False)
 | 
			
		||||
        bigdl_lcmu_enabled = config_dict.pop("bigdl_lcmu_enabled", True)
 | 
			
		||||
 | 
			
		||||
        invalidInputError(qtype,
 | 
			
		||||
                          "Detect this model is not a low-bit model, Please use from_pretrained"
 | 
			
		||||
                          " with load_in_4bit or load_in_low_bit to get a low-bit model , and "
 | 
			
		||||
                          " serialize the model using save_low_bit first.")
 | 
			
		||||
        invalidInputError(
 | 
			
		||||
            qtype,
 | 
			
		||||
            "Detect this model is not a low-bit model, Please use from_pretrained"
 | 
			
		||||
            " with load_in_4bit or load_in_low_bit to get a low-bit model , and "
 | 
			
		||||
            " serialize the model using save_low_bit first.",
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        invalidInputError(qtype in ["sym_int8_rtn", "sym_int4_rtn"],
 | 
			
		||||
                          f"Unknown bigdl_transformers_low_bit value: {qtype},"
 | 
			
		||||
                          f" expected: sym_int4, asym_int4, sym_int5, asym_int5 or sym_int8.")
 | 
			
		||||
        invalidInputError(
 | 
			
		||||
            qtype in ["sym_int8_rtn", "sym_int4_rtn"],
 | 
			
		||||
            f"Unknown bigdl_transformers_low_bit value: {qtype},"
 | 
			
		||||
            f" expected: sym_int4, asym_int4, sym_int5, asym_int5 or sym_int8.",
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        has_remote_code = hasattr(config, "auto_map") and cls.HF_Model.__name__ in config.auto_map
 | 
			
		||||
        has_local_code = type(config) in cls.HF_Model._model_mapping.keys()
 | 
			
		||||
| 
						 | 
				
			
			@ -249,15 +275,13 @@ class _BaseAutoModelClass:
 | 
			
		|||
            model_class = _get_model_class(config, cls.HF_Model._model_mapping)
 | 
			
		||||
 | 
			
		||||
        resolved_archive_file, is_sharded = extract_local_archive_file(
 | 
			
		||||
            pretrained_model_name_or_path,
 | 
			
		||||
            subfolder,
 | 
			
		||||
            variant)
 | 
			
		||||
            pretrained_model_name_or_path, subfolder, variant
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        if is_sharded:
 | 
			
		||||
            resolved_archive_file, sharded_metadata = \
 | 
			
		||||
                get_local_shard_files(pretrained_model_name_or_path,
 | 
			
		||||
                                      resolved_archive_file,
 | 
			
		||||
                                      subfolder=subfolder)
 | 
			
		||||
            resolved_archive_file, sharded_metadata = get_local_shard_files(
 | 
			
		||||
                pretrained_model_name_or_path, resolved_archive_file, subfolder=subfolder
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        # set dtype to instantiate the model under:
 | 
			
		||||
        # 1. If torch_dtype is not None, we use that dtype
 | 
			
		||||
| 
						 | 
				
			
			@ -281,9 +305,11 @@ class _BaseAutoModelClass:
 | 
			
		|||
                            torch_dtype = get_state_dict_dtype(one_state_dict)
 | 
			
		||||
                            del one_state_dict  # free CPU memory
 | 
			
		||||
                else:
 | 
			
		||||
                    invalidInputError(False,
 | 
			
		||||
                                      f'`torch_dtype` can be either `torch.dtype` or `"auto"`,'
 | 
			
		||||
                                      'but received {torch_dtype}')
 | 
			
		||||
                    invalidInputError(
 | 
			
		||||
                        False,
 | 
			
		||||
                        f'`torch_dtype` can be either `torch.dtype` or `"auto"`,'
 | 
			
		||||
                        "but received {torch_dtype}",
 | 
			
		||||
                    )
 | 
			
		||||
            dtype_orig = model_class._set_default_torch_dtype(torch_dtype)
 | 
			
		||||
 | 
			
		||||
        # Pretrained Model
 | 
			
		||||
| 
						 | 
				
			
			@ -293,8 +319,10 @@ class _BaseAutoModelClass:
 | 
			
		|||
 | 
			
		||||
        if bigdl_lcmu_enabled:
 | 
			
		||||
            with ContextManagers(init_contexts):
 | 
			
		||||
                if config.architectures is not None and config.architectures[0] in \
 | 
			
		||||
                   ["ChatGLMModel", "ChatGLMForConditionalGeneration"]:
 | 
			
		||||
                if config.architectures is not None and config.architectures[0] in [
 | 
			
		||||
                    "ChatGLMModel",
 | 
			
		||||
                    "ChatGLMForConditionalGeneration",
 | 
			
		||||
                ]:
 | 
			
		||||
 | 
			
		||||
                    """
 | 
			
		||||
                    ChatGLMModel uses skip_init by default, which will force modules placed on cpu
 | 
			
		||||
| 
						 | 
				
			
			@ -310,6 +338,7 @@ class _BaseAutoModelClass:
 | 
			
		|||
        quant_device = "meta" if bigdl_lcmu_enabled else "cpu"
 | 
			
		||||
        logger.info(f"Converting model, it may takes up to several minutes ...")
 | 
			
		||||
        from intel_npu_acceleration_library.compiler import create_npu_kernels
 | 
			
		||||
 | 
			
		||||
        with torch.no_grad():
 | 
			
		||||
            optimize_llm(model)
 | 
			
		||||
            cls.load_convert(qtype, model, quant_device, *model_args, **kwargs)
 | 
			
		||||
| 
						 | 
				
			
			@ -322,8 +351,10 @@ class _BaseAutoModelClass:
 | 
			
		|||
        else:
 | 
			
		||||
            import os
 | 
			
		||||
            import json
 | 
			
		||||
            with open(os.path.join(pretrained_model_name_or_path,
 | 
			
		||||
                                   "load_keys.json"), "r") as json_file:
 | 
			
		||||
 | 
			
		||||
            with open(
 | 
			
		||||
                os.path.join(pretrained_model_name_or_path, "load_keys.json"), "r"
 | 
			
		||||
            ) as json_file:
 | 
			
		||||
                loaded_data = json.load(json_file)
 | 
			
		||||
            loaded_state_dict_keys = loaded_data["all_checkpoint_keys"]
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -0,0 +1,56 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def convert_forward(m, target_m, new_forward):
 | 
			
		||||
    if m.__class__ == target_m:
 | 
			
		||||
        bound_method = new_forward.__get__(m, m.__class__)
 | 
			
		||||
        setattr(m, "forward", bound_method)
 | 
			
		||||
    for _, sub_m in m.named_children():
 | 
			
		||||
        convert_forward(sub_m, target_m, new_forward)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def optimize_llm(
 | 
			
		||||
    model: torch.nn.Module,
 | 
			
		||||
    max_output_len=1024,
 | 
			
		||||
    max_prompt_len=1024,
 | 
			
		||||
    inter_pp=2,
 | 
			
		||||
    intra_pp=2,
 | 
			
		||||
    transpose_value_cache=True,
 | 
			
		||||
):
 | 
			
		||||
    if model.config.model_type == "llama":
 | 
			
		||||
        from ipex_llm.transformers.npu_models.llama_mp import gen_llama_fused_model_forward
 | 
			
		||||
        from ipex_llm.transformers.npu_models.llama_mp import DecodeRunner, PrefillRunner
 | 
			
		||||
        from transformers.models.llama.modeling_llama import LlamaModel
 | 
			
		||||
 | 
			
		||||
        decode_runner = DecodeRunner(
 | 
			
		||||
            model,
 | 
			
		||||
            max_seq_len=max_output_len,
 | 
			
		||||
            inter_pp=inter_pp,
 | 
			
		||||
            intra_pp=intra_pp,
 | 
			
		||||
            transpose_value_cache=transpose_value_cache,
 | 
			
		||||
        )
 | 
			
		||||
        prefill_runner = PrefillRunner(
 | 
			
		||||
            model,
 | 
			
		||||
            max_output_len=max_output_len,
 | 
			
		||||
            max_prompt_len=max_prompt_len,
 | 
			
		||||
            transpose_value_cache=transpose_value_cache,
 | 
			
		||||
        )
 | 
			
		||||
        llama_model_forward = gen_llama_fused_model_forward(
 | 
			
		||||
            prefill_runner=prefill_runner, decode_runner=decode_runner
 | 
			
		||||
        )
 | 
			
		||||
        convert_forward(model, LlamaModel, llama_model_forward)
 | 
			
		||||
| 
						 | 
				
			
			@ -21,69 +21,78 @@ from transformers.cache_utils import DynamicCache
 | 
			
		|||
import sys
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def init_fused_kv_cache(batch_size, num_heads, head_dim,
 | 
			
		||||
                        current_length, max_length, dtype,
 | 
			
		||||
                        device, tranpose_value=False):
 | 
			
		||||
def init_fused_kv_cache(
 | 
			
		||||
    batch_size, num_heads, head_dim, current_length, max_length, dtype, device, tranpose_value=False
 | 
			
		||||
):
 | 
			
		||||
    if not tranpose_value:
 | 
			
		||||
        key_cache_storage = torch.zeros(batch_size, num_heads,
 | 
			
		||||
                                        max_length, head_dim,
 | 
			
		||||
                                        dtype=dtype, device=device)
 | 
			
		||||
        value_cache_storage = torch.zeros(batch_size, num_heads,
 | 
			
		||||
                                          max_length, head_dim,
 | 
			
		||||
                                          dtype=dtype, device=device)
 | 
			
		||||
        key_cache_storage = torch.zeros(
 | 
			
		||||
            batch_size, num_heads, max_length, head_dim, dtype=dtype, device=device
 | 
			
		||||
        )
 | 
			
		||||
        value_cache_storage = torch.zeros(
 | 
			
		||||
            batch_size, num_heads, max_length, head_dim, dtype=dtype, device=device
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        key_cache = key_cache_storage.as_strided((batch_size, num_heads,
 | 
			
		||||
                                                  current_length, head_dim),
 | 
			
		||||
                                                 key_cache_storage.stride(),
 | 
			
		||||
                                                 storage_offset=0)
 | 
			
		||||
        value_cache = value_cache_storage.as_strided((batch_size, num_heads,
 | 
			
		||||
                                                      current_length, head_dim),
 | 
			
		||||
                                                     value_cache_storage.stride(),
 | 
			
		||||
                                                     storage_offset=0)
 | 
			
		||||
        key_cache = key_cache_storage.as_strided(
 | 
			
		||||
            (batch_size, num_heads, current_length, head_dim),
 | 
			
		||||
            key_cache_storage.stride(),
 | 
			
		||||
            storage_offset=0,
 | 
			
		||||
        )
 | 
			
		||||
        value_cache = value_cache_storage.as_strided(
 | 
			
		||||
            (batch_size, num_heads, current_length, head_dim),
 | 
			
		||||
            value_cache_storage.stride(),
 | 
			
		||||
            storage_offset=0,
 | 
			
		||||
        )
 | 
			
		||||
        return key_cache, value_cache
 | 
			
		||||
    else:
 | 
			
		||||
        key_cache_storage = torch.zeros(batch_size, num_heads,
 | 
			
		||||
                                        max_length, head_dim,
 | 
			
		||||
                                        dtype=dtype, device=device)
 | 
			
		||||
        value_cache_storage = torch.zeros(batch_size, num_heads,
 | 
			
		||||
                                          head_dim, max_length,
 | 
			
		||||
                                          dtype=dtype, device=device)
 | 
			
		||||
        key_cache_storage = torch.zeros(
 | 
			
		||||
            batch_size, num_heads, max_length, head_dim, dtype=dtype, device=device
 | 
			
		||||
        )
 | 
			
		||||
        value_cache_storage = torch.zeros(
 | 
			
		||||
            batch_size, num_heads, head_dim, max_length, dtype=dtype, device=device
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        key_cache = key_cache_storage.as_strided((batch_size, num_heads,
 | 
			
		||||
                                                  current_length, head_dim),
 | 
			
		||||
                                                 key_cache_storage.stride(),
 | 
			
		||||
                                                 storage_offset=0)
 | 
			
		||||
        value_cache = value_cache_storage.as_strided((batch_size, num_heads,
 | 
			
		||||
                                                      head_dim, current_length),
 | 
			
		||||
                                                     value_cache_storage.stride(),
 | 
			
		||||
                                                     storage_offset=0)
 | 
			
		||||
        key_cache = key_cache_storage.as_strided(
 | 
			
		||||
            (batch_size, num_heads, current_length, head_dim),
 | 
			
		||||
            key_cache_storage.stride(),
 | 
			
		||||
            storage_offset=0,
 | 
			
		||||
        )
 | 
			
		||||
        value_cache = value_cache_storage.as_strided(
 | 
			
		||||
            (batch_size, num_heads, head_dim, current_length),
 | 
			
		||||
            value_cache_storage.stride(),
 | 
			
		||||
            storage_offset=0,
 | 
			
		||||
        )
 | 
			
		||||
        return key_cache, value_cache.transpose(-1, -2)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def append_fused_kv_cache(cache_k, cache_v, key_states, value_states, transpose_value=False):
 | 
			
		||||
    if not transpose_value:
 | 
			
		||||
        new_size = (cache_k.size(0),
 | 
			
		||||
                    cache_k.size(1),
 | 
			
		||||
                    cache_k.size(2) + key_states.size(2),
 | 
			
		||||
                    cache_k.size(3))
 | 
			
		||||
        new_size = (
 | 
			
		||||
            cache_k.size(0),
 | 
			
		||||
            cache_k.size(1),
 | 
			
		||||
            cache_k.size(2) + key_states.size(2),
 | 
			
		||||
            cache_k.size(3),
 | 
			
		||||
        )
 | 
			
		||||
        new_cache_k = cache_k.as_strided(new_size, cache_k.stride(), storage_offset=0)
 | 
			
		||||
        new_cache_k[:, :, cache_k.size(2):cache_k.size(2) + key_states.size(2), :] = key_states
 | 
			
		||||
        new_cache_v = cache_v.as_strided(new_size, cache_v.stride(), storage_offset=0)
 | 
			
		||||
        new_cache_v[:, :, cache_v.size(2):cache_v.size(2) + key_states.size(2), :] = value_states
 | 
			
		||||
        return new_cache_k, new_cache_v
 | 
			
		||||
    else:
 | 
			
		||||
        new_size_key = (cache_k.size(0),
 | 
			
		||||
                        cache_k.size(1),
 | 
			
		||||
                        cache_k.size(2) + key_states.size(2),
 | 
			
		||||
                        cache_k.size(3))
 | 
			
		||||
        new_size_key = (
 | 
			
		||||
            cache_k.size(0),
 | 
			
		||||
            cache_k.size(1),
 | 
			
		||||
            cache_k.size(2) + key_states.size(2),
 | 
			
		||||
            cache_k.size(3),
 | 
			
		||||
        )
 | 
			
		||||
        new_cache_k = cache_k.as_strided(new_size_key, cache_k.stride(), storage_offset=0)
 | 
			
		||||
        new_cache_k[:, :, cache_k.size(2):cache_k.size(2) + key_states.size(2), :] = key_states
 | 
			
		||||
 | 
			
		||||
        new_size_value = (cache_v.size(0),
 | 
			
		||||
                          cache_v.size(1),
 | 
			
		||||
                          cache_v.size(3),
 | 
			
		||||
                          cache_v.size(2) + value_states.size(3),
 | 
			
		||||
                          )
 | 
			
		||||
        new_size_value = (
 | 
			
		||||
            cache_v.size(0),
 | 
			
		||||
            cache_v.size(1),
 | 
			
		||||
            cache_v.size(3),
 | 
			
		||||
            cache_v.size(2) + value_states.size(3),
 | 
			
		||||
        )
 | 
			
		||||
        raw_cache_v = cache_v.transpose(-1, -2)
 | 
			
		||||
        new_cache_v = raw_cache_v.as_strided(new_size_value, raw_cache_v.stride(), storage_offset=0)
 | 
			
		||||
        start = raw_cache_v.size(3)
 | 
			
		||||
| 
						 | 
				
			
			@ -92,6 +101,46 @@ def append_fused_kv_cache(cache_k, cache_v, key_states, value_states, transpose_
 | 
			
		|||
        return new_cache_k, new_cache_v.transpose(-1, -2)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def expand_fused_kv_cache(cache_k, cache_v, transpose_value=False):
 | 
			
		||||
    if not transpose_value:
 | 
			
		||||
        new_size = (cache_k.size(0), cache_k.size(1), cache_k.size(2) + 1, cache_k.size(3))
 | 
			
		||||
        new_cache_k = cache_k.as_strided(new_size, cache_k.stride(), storage_offset=0)
 | 
			
		||||
        new_cache_v = cache_v.as_strided(new_size, cache_v.stride(), storage_offset=0)
 | 
			
		||||
        return new_cache_k, new_cache_v
 | 
			
		||||
    else:
 | 
			
		||||
        new_size_key = (cache_k.size(0), cache_k.size(1), cache_k.size(2) + 1, cache_k.size(3))
 | 
			
		||||
        new_cache_k = cache_k.as_strided(new_size_key, cache_k.stride(), storage_offset=0)
 | 
			
		||||
        new_size_value = (
 | 
			
		||||
            cache_v.size(0),
 | 
			
		||||
            cache_v.size(1),
 | 
			
		||||
            cache_v.size(3),
 | 
			
		||||
            cache_v.size(2) + 1,
 | 
			
		||||
        )
 | 
			
		||||
        raw_cache_v = cache_v.transpose(-1, -2)
 | 
			
		||||
        new_cache_v = raw_cache_v.as_strided(new_size_value, raw_cache_v.stride(), storage_offset=0)
 | 
			
		||||
        return new_cache_k, new_cache_v.transpose(-1, -2)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def shrink_fused_kv_cache(cache_k, cache_v, new_seq_len, transpose_value=False):
 | 
			
		||||
    if not transpose_value:
 | 
			
		||||
        new_size = (cache_k.size(0), cache_k.size(1), new_seq_len, cache_k.size(3))
 | 
			
		||||
        new_cache_k = cache_k.as_strided(new_size, cache_k.stride(), storage_offset=0)
 | 
			
		||||
        new_cache_v = cache_v.as_strided(new_size, cache_v.stride(), storage_offset=0)
 | 
			
		||||
        return new_cache_k, new_cache_v
 | 
			
		||||
    else:
 | 
			
		||||
        new_size_key = (cache_k.size(0), cache_k.size(1), new_seq_len, cache_k.size(3))
 | 
			
		||||
        new_cache_k = cache_k.as_strided(new_size_key, cache_k.stride(), storage_offset=0)
 | 
			
		||||
        new_size_value = (
 | 
			
		||||
            cache_v.size(0),
 | 
			
		||||
            cache_v.size(1),
 | 
			
		||||
            cache_v.size(3),
 | 
			
		||||
            new_seq_len,
 | 
			
		||||
        )
 | 
			
		||||
        raw_cache_v = cache_v.transpose(-1, -2)
 | 
			
		||||
        new_cache_v = raw_cache_v.as_strided(new_size_value, raw_cache_v.stride(), storage_offset=0)
 | 
			
		||||
        return new_cache_k, new_cache_v.transpose(-1, -2)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class DynamicFusedNormalCache(DynamicCache):
 | 
			
		||||
    # Experimental support for fused decoderlayer implementation on NPU
 | 
			
		||||
    # Currently only for llama2
 | 
			
		||||
| 
						 | 
				
			
			@ -119,13 +168,18 @@ class DynamicFusedNormalCache(DynamicCache):
 | 
			
		|||
        if layer_idx not in self.key_cache:
 | 
			
		||||
            max_len = max_seq_length
 | 
			
		||||
            k_cache, v_cache = init_fused_kv_cache(
 | 
			
		||||
                batch_size, num_heads, head_dim,
 | 
			
		||||
                0, max_len,
 | 
			
		||||
                key_states.dtype, key_states.device,
 | 
			
		||||
                batch_size,
 | 
			
		||||
                num_heads,
 | 
			
		||||
                head_dim,
 | 
			
		||||
                0,
 | 
			
		||||
                max_len,
 | 
			
		||||
                key_states.dtype,
 | 
			
		||||
                key_states.device,
 | 
			
		||||
                tranpose_value=transpose_value,
 | 
			
		||||
            )
 | 
			
		||||
            k_cache, v_cache = append_fused_kv_cache(k_cache, v_cache, key_states, value_states,
 | 
			
		||||
                                                     transpose_value=transpose_value)
 | 
			
		||||
            k_cache, v_cache = append_fused_kv_cache(
 | 
			
		||||
                k_cache, v_cache, key_states, value_states, transpose_value=transpose_value
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
            self.key_cache[layer_idx] = k_cache
 | 
			
		||||
            self.value_cache[layer_idx] = v_cache
 | 
			
		||||
| 
						 | 
				
			
			@ -134,8 +188,9 @@ class DynamicFusedNormalCache(DynamicCache):
 | 
			
		|||
            v_cache = self.value_cache[layer_idx]
 | 
			
		||||
 | 
			
		||||
            kv_seq_len = k_cache.size(2) + key_states.size(2)
 | 
			
		||||
            k_cache, v_cache = append_fused_kv_cache(k_cache, v_cache, key_states, value_states,
 | 
			
		||||
                                                     transpose_value=transpose_value)
 | 
			
		||||
            k_cache, v_cache = append_fused_kv_cache(
 | 
			
		||||
                k_cache, v_cache, key_states, value_states, transpose_value=transpose_value
 | 
			
		||||
            )
 | 
			
		||||
            self.key_cache[layer_idx] = k_cache
 | 
			
		||||
            self.value_cache[layer_idx] = v_cache
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -147,6 +202,25 @@ class DynamicFusedNormalCache(DynamicCache):
 | 
			
		|||
 | 
			
		||||
        for idx, layer in self.key_cache.items():
 | 
			
		||||
            return layer.shape[-2]
 | 
			
		||||
        return 0
 | 
			
		||||
 | 
			
		||||
    def expand(self, transpose_value=True):
 | 
			
		||||
        for idx, layer in self.key_cache.items():
 | 
			
		||||
            key_cache, value_cache = expand_fused_kv_cache(
 | 
			
		||||
                self.key_cache[idx],
 | 
			
		||||
                self.value_cache[idx],
 | 
			
		||||
                transpose_value=transpose_value,
 | 
			
		||||
            )
 | 
			
		||||
            self.key_cache[idx] = key_cache
 | 
			
		||||
            self.value_cache[idx] = value_cache
 | 
			
		||||
 | 
			
		||||
    def shrink(self, new_seq_len, transpose_value=True):
 | 
			
		||||
        for idx, layer in self.key_cache.items():
 | 
			
		||||
            key_cache, value_cache = shrink_fused_kv_cache(
 | 
			
		||||
                self.key_cache[idx], self.value_cache[idx], new_seq_len, transpose_value
 | 
			
		||||
            )
 | 
			
		||||
            self.key_cache[idx] = key_cache
 | 
			
		||||
            self.value_cache[idx] = value_cache
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def _seen_tokens(self):
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										1233
									
								
								python/llm/src/ipex_llm/transformers/npu_models/llama_mp.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1233
									
								
								python/llm/src/ipex_llm/transformers/npu_models/llama_mp.py
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							
		Loading…
	
		Reference in a new issue