ipex-llm/python/llm/example/GPU/PyTorch-Models/Model/minicpm/generate.py
Zijie Li bfa1367149
Add CPU and GPU example for MiniCPM (#11202)
* Change installation address

Change former address: "https://docs.conda.io/en/latest/miniconda.html#" to new address: "https://conda-forge.org/download/" for 63 occurrences under python\llm\example

* Change Prompt

Change "Anaconda Prompt" to "Miniforge Prompt" for 1 occurrence

* Create and update model minicpm

* Update model minicpm

Update model minicpm under GPU/PyTorch-Models

* Update readme and generate.py

change "prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=False)" and delete "pip install transformers==4.37.0
"

* Update comments for minicpm GPU

Update comments for generate.py at minicpm GPU

* Add CPU example for MiniCPM

* Update minicpm README for CPU

* Update README for MiniCPM and Llama3

* Update Readme for Llama3 CPU Pytorch

* Update and fix comments for MiniCPM
2024-06-05 18:09:53 +08:00

81 lines
3.4 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
from transformers import AutoModelForCausalLM, AutoTokenizer
from ipex_llm import optimize_model
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for MiniCPM model')
parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-2B-sft-bf16",
help='The huggingface repo id for the MiniCPM model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
# Load model
model = AutoModelForCausalLM.from_pretrained(model_path,
trust_remote_code=True,
torch_dtype='auto',
low_cpu_mem_usage=True,
use_cache=True)
# With only one line to enable IPEX-LLM optimization on model
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the optimize_model function.
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
model = optimize_model(model)
model = model.to('xpu')
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
# Generate predicted tokens
with torch.inference_mode():
# here the prompt formatting refers to: https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16/blob/79fbb1db171e6d8bf77cdb0a94076a43003abd9e/modeling_minicpm.py#L1320
chat = [
{ "role": "user", "content": args.prompt },
]
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=False)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
# ipex_llm model needs a warmup, then inference time can be accurate
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
# start inference
st = time.time()
output = model.generate(input_ids,
do_sample=False,
max_new_tokens=args.n_predict)
torch.xpu.synchronize()
end = time.time()
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(output_str)