* update-llava-example * add warmup * small fix on llava example * remove space& extra print prompt * renew example * small fix --------- Co-authored-by: Jinhe Tang <jin.tang1337@gmail.com>
		
			
				
	
	
		
			86 lines
		
	
	
	
		
			3.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			86 lines
		
	
	
	
		
			3.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
import argparse
 | 
						|
import os
 | 
						|
 | 
						|
import requests
 | 
						|
import time
 | 
						|
import torch
 | 
						|
from PIL import Image
 | 
						|
from transformers import LlavaForConditionalGeneration, AutoProcessor
 | 
						|
 | 
						|
from ipex_llm import optimize_model
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for LLaVA model')
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str, default="llava-hf/llava-1.5-7b-hf",
 | 
						|
                        help='The huggingface repo id for the LLaVA model to be downloaded'
 | 
						|
                             ', or the path to the huggingface checkpoint folder')
 | 
						|
    parser.add_argument('--image-url-or-path', type=str,
 | 
						|
                        default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',                        
 | 
						|
                        help='The URL or path to the image to infer')
 | 
						|
    parser.add_argument('--prompt', type=str, default="Describe image in detail",
 | 
						|
                        help='Prompt to infer')
 | 
						|
    parser.add_argument('--n-predict', type=int, default=32,
 | 
						|
                        help='Max tokens to predict') 
 | 
						|
    args = parser.parse_args()
 | 
						|
    model_path = args.repo_id_or_model_path
 | 
						|
    image_path = args.image_url_or_path
 | 
						|
    prompt = args.prompt
 | 
						|
 | 
						|
    model = LlavaForConditionalGeneration.from_pretrained(model_path)
 | 
						|
    model = optimize_model(model, low_bit='sym_int4').eval()
 | 
						|
    model = model.half().to("xpu")
 | 
						|
 | 
						|
    processor = AutoProcessor.from_pretrained(model_path)
 | 
						|
 | 
						|
    # here the prompt tuning refers to https://huggingface.co/llava-hf/llava-1.5-7b-hf#using-pure-transformers
 | 
						|
    messages = [
 | 
						|
        {
 | 
						|
            "role": "user",
 | 
						|
            "content": [
 | 
						|
                {"type": "image"},
 | 
						|
                {"type": "text", "text": prompt}
 | 
						|
            ]
 | 
						|
        }
 | 
						|
    ]
 | 
						|
    text = processor.apply_chat_template(messages, add_generation_prompt=True)
 | 
						|
 | 
						|
    if os.path.exists(image_path):
 | 
						|
       image = Image.open(image_path)
 | 
						|
    else:
 | 
						|
       image = Image.open(requests.get(image_path, stream=True).raw)
 | 
						|
 | 
						|
    inputs = processor(text=text, images=image, return_tensors="pt").to('xpu')
 | 
						|
 | 
						|
    with torch.inference_mode():
 | 
						|
        # warmup
 | 
						|
        output = model.generate(**inputs, do_sample=False, max_new_tokens=args.n_predict)
 | 
						|
 | 
						|
        # start inference
 | 
						|
        st = time.time()
 | 
						|
        output = model.generate(**inputs, do_sample=False, max_new_tokens=args.n_predict)
 | 
						|
        et = time.time()
 | 
						|
 | 
						|
    output_str = processor.decode(output[0])
 | 
						|
    print(f'Inference time: {et-st} s')
 | 
						|
    print('-'*20, 'Input Image', '-'*20)
 | 
						|
    print(image_path)
 | 
						|
    print('-'*20, 'Prompt', '-'*20)
 | 
						|
    print(prompt)
 | 
						|
    print('-'*20, 'Output', '-'*20)
 | 
						|
    print(output_str)
 |