Update Llava GPU Example (#12311)

* update-llava-example

* add warmup

* small fix on llava example

* remove space& extra print prompt

* renew example

* small fix

---------
Co-authored-by: Jinhe Tang <jin.tang1337@gmail.com>
This commit is contained in:
Zijie Li 2024-11-01 05:06:00 -04:00 committed by GitHub
parent f53bb4ea0b
commit cd5e22cee5
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 75 additions and 351 deletions

View file

@ -1,11 +1,11 @@
# LLaVA
In this directory, you will find examples on how you could use IPEX-LLM `optimize_model` API on LLaVA models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [liuhaotian/llava-v1.5-7b](https://huggingface.co/liuhaotian/llava-v1.5-7b) as a reference LLaVA model.
In this directory, you will find examples on how you could use IPEX-LLM `optimize_model` API to accelerate LLaVA models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [llava-hf/llava-1.5-7b-hf](https://huggingface.co/llava-hf/llava-1.5-7b-hf) as a reference LLaVA model.
## 0. Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
## Example: Multi-turn chat centered around an image using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a LLaVA model to start a multi-turn chat centered around an image using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a LLaVA model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
### 1. Install
#### 1.1 Installation on Linux
We suggest using conda to manage environment:
@ -15,12 +15,7 @@ conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
pip install einops # install dependencies required by llava
git clone https://github.com/haotian-liu/LLaVA.git # clone the llava libary
cp generate.py ./LLaVA/ # copy our example to the LLaVA folder
cd LLaVA # change the working directory to the LLaVA folder
git checkout tags/v1.2.0 -b 1.2.0 # Get the branch which is compatible with transformers 4.36
pip install transformers==4.43.0
```
#### 1.2 Installation on Windows
@ -32,12 +27,7 @@ conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
pip install einops # install dependencies required by llava
git clone https://github.com/haotian-liu/LLaVA.git # clone the llava libary
copy generate.py .\LLaVA\ # copy our example to the LLaVA folder
cd LLaVA # change the working directory to the LLaVA folder
git checkout tags/v1.2.0 -b 1.2.0 # Get the branch which is compatible with transformers 4.36
pip install transformers==4.43.0
```
### 2. Configures OneAPI environment variables for Linux
@ -116,42 +106,30 @@ set SYCL_CACHE_PERSISTENT=1
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples
```bash
python ./generate.py --image-path-or-url 'https://llava-vl.github.io/static/images/monalisa.jpg'
```
python ./generate.py
```
In the example, several arguments can be passed to satisfy your requirements:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the LLaVA model (e.g. `liuhaotian/llava-v1.5-7b` to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'liuhaotian/llava-v1.5-7b'`.
- `--image-path-or-url IMAGE_PATH_OR_URL`: argument defining the input image that the chat will focus on. It is required.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `512`.
If you encounter some network error (which means your machine is unable to access huggingface.co) when running this example, refer to [Trouble Shooting](#4-trouble-shooting) section.
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the LLaVA model (e.g. `llava-hf/llava-1.5-7b-hf`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'llava-hf/llava-1.5-7b-hf'`.
- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'Describe image in detail'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
#### Sample Output
#### [liuhaotian/llava-v1.5-7b](https://huggingface.co/liuhaotian/llava-v1.5-7b)
#### [llava-hf/llava-1.5-7b-hf](https://huggingface.co/llava-hf/llava-1.5-7b-hf)
```log
USER: Do you know who drew this painting?
ASSISTANT: Yes, the painting is a portrait of a woman by Leonardo da Vinci. It's a famous artwork known as the "Mona Lisa."
USER: Can you describe this painting?
ASSISTANT: The painting features a well-detailed portrait of a woman, painted in oil on a canvas. The woman appears to be a young woman staring straight ahead in a direct gaze towards the viewer. The woman's facial features are rendered sharply in the brush strokes, giving her a lifelike, yet enigmatic expression.
The background of the image mainly showcases the woman's face, with some hills visible in the lower part of the painting. The artist employs a wide range of shades, evoking a sense of depth and realism in the subject matter. The technique used in this portrait sets it apart from other artworks during the Renaissance period, making it a notable piece in art history.
Inference time: xxxx s
-------------------- Input Image --------------------
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
-------------------- Prompt --------------------
Describe image in detail
-------------------- Output --------------------
<s> USER: <image>
Describe image in detail ASSISTANT: The image features a young girl holding a white teddy bear in her hands. She is smiling and appears to be enjoying the moment. The girl is
```
The sample input image is:
The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)):
<a href="https://llava-vl.github.io/static/images/monalisa.jpg"><img width=400px src="https://llava-vl.github.io/static/images/monalisa.jpg" ></a>
### 5 Trouble shooting
#### 5.1 SSLError
If you encounter the following output, it means your machine has some trouble accessing huggingface.co.
```log
requests.exceptions.SSLError: (MaxRetryError("HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /openai/clip-vit-large-patch14-336/resolve/main/config.json (Caused by SSLError(SSLZeroReturnError(6, 'TLS/SSL connection has been closed (EOF) (_ssl.c:1129)')))"),
```
You can resolve this problem with the following steps:
1. Download https://huggingface.co/openai/clip-vit-large-patch14-336 on some machine that can access huggingface.co, and put it in huggingface's local cache (default to be `~/.cache/huggingface/hub`) on the machine that you are going to run this example.
2. Set the environment variable (`export TRANSFORMERS_OFFLINE=1`) before you run the example.
<a href="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg"><img width=400px src="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg" ></a>

View file

@ -13,328 +13,74 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/haotian-liu/LLaVA/blob/v1.1.1/llava/model/builder.py
# and
# https://github.com/haotian-liu/LLaVA/blob/v1.1.1/llava/serve/cli.py
#
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import torch
import os
import requests
import time
from transformers import AutoModelForCausalLM
from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
from transformers import AutoTokenizer
from transformers import TextStreamer
from llava.constants import (
DEFAULT_IMAGE_PATCH_TOKEN,
IMAGE_TOKEN_INDEX,
DEFAULT_IMAGE_TOKEN,
DEFAULT_IM_START_TOKEN,
DEFAULT_IM_END_TOKEN
)
from llava.conversation import conv_templates, SeparatorStyle
from llava.utils import disable_torch_init
from llava.mm_utils import (
process_images,
tokenizer_image_token,
get_model_name_from_path,
KeywordsStoppingCriteria
)
import torch
from PIL import Image
from transformers import LlavaForConditionalGeneration, AutoProcessor
from ipex_llm import optimize_model
# Load the pretrained model.
# Adapted from llava.model.builder.load_pretrained_model.
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False,
device_map="auto", device="cpu"):
kwargs = {"device_map": device_map}
if 'llava' in model_name.lower():
# Load LLaVA model
if 'lora' in model_name.lower() and model_base is None:
warnings.warn('There is `lora` in model name but no `model_base` is provided.'
'If you are loading a LoRA model, please provide the `model_base` argument'
'. Detailed instruction:'
'https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged.')
if 'lora' in model_name.lower() and model_base is not None:
lora_cfg_pretrained = AutoConfig.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(
model_base, use_fast=False)
print('Loading LLaVA from base model...')
model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True,
config=lora_cfg_pretrained, **kwargs)
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
if model.lm_head.weight.shape[0] != token_num:
model.lm_head.weight = torch.nn.Parameter(torch.empty(
token_num, tokem_dim, device=model.device, dtype=model.dtype))
model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(
token_num, tokem_dim, device=model.device, dtype=model.dtype))
print('Loading additional LLaVA weights...')
if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')):
non_lora_trainables = torch.load(os.path.join(model_path,
'non_lora_trainables.bin'),
map_location='cpu')
else:
# this is probably from HF Hub
from huggingface_hub import hf_hub_download
def load_from_hf(repo_id, filename, subfolder=None):
cache_file = hf_hub_download(
repo_id=repo_id,
filename=filename,
subfolder=subfolder)
return torch.load(cache_file, map_location='cpu')
non_lora_trainables = load_from_hf(
model_path, 'non_lora_trainables.bin')
non_lora_trainables = {(k[11:] if k.startswith(
'base_model.') else k): v for k, v in non_lora_trainables.items()}
if any(k.startswith('model.model.') for k in non_lora_trainables):
non_lora_trainables = {(k[6:] if k.startswith(
'model.') else k): v for k, v in non_lora_trainables.items()}
model.load_state_dict(non_lora_trainables, strict=False)
from peft import PeftModel
print('Loading LoRA weights...')
model = PeftModel.from_pretrained(model, model_path)
print('Merging LoRA weights...')
model = model.merge_and_unload()
print('Model is loaded...')
elif model_base is not None:
# this may be mm projector only
print('Loading LLaVA from base model...')
if 'mpt' in model_name.lower():
if not os.path.isfile(os.path.join(model_path, 'configuration_mpt.py')):
shutil.copyfile(os.path.join(model_base, 'configuration_mpt.py'), os.path.join(
model_path, 'configuration_mpt.py'))
tokenizer = AutoTokenizer.from_pretrained(
model_base, use_fast=True)
cfg_pretrained = AutoConfig.from_pretrained(
model_path, trust_remote_code=True)
model = LlavaMPTForCausalLM.from_pretrained(
model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
else:
tokenizer = AutoTokenizer.from_pretrained(
model_base, use_fast=False)
cfg_pretrained = AutoConfig.from_pretrained(model_path)
model = LlavaLlamaForCausalLM.from_pretrained(
model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
mm_projector_weights = torch.load(os.path.join(
model_path, 'mm_projector.bin'), map_location='cpu')
mm_projector_weights = {k: v.to(torch.float32)
for k, v in mm_projector_weights.items()}
model.load_state_dict(mm_projector_weights, strict=False)
else:
if 'mpt' in model_name.lower():
tokenizer = AutoTokenizer.from_pretrained(
model_path, use_fast=True)
model = LlavaMPTForCausalLM.from_pretrained(
model_path, low_cpu_mem_usage=True, **kwargs)
else:
tokenizer = AutoTokenizer.from_pretrained(
model_path, use_fast=False)
model = LlavaLlamaForCausalLM.from_pretrained(
model_path, low_cpu_mem_usage=True)
else:
# Load language model
if model_base is not None:
# PEFT model
from peft import PeftModel
tokenizer = AutoTokenizer.from_pretrained(
model_base, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(
model_base, torch_dtype=torch.float32, low_cpu_mem_usage=True, device_map="auto")
print(f"Loading LoRA weights from {model_path}")
model = PeftModel.from_pretrained(model, model_path)
print(f"Merging weights")
model = model.merge_and_unload()
print('Convert to FP32...')
model.to(torch.float32)
else:
use_fast = False
if 'mpt' in model_name.lower():
tokenizer = AutoTokenizer.from_pretrained(
model_path, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(
model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs)
else:
tokenizer = AutoTokenizer.from_pretrained(
model_path, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, low_cpu_mem_usage=True, **kwargs)
image_processor = None
if 'llava' in model_name.lower():
mm_use_im_start_end = getattr(
model.config, "mm_use_im_start_end", False)
mm_use_im_patch_token = getattr(
model.config, "mm_use_im_patch_token", True)
if mm_use_im_patch_token:
tokenizer.add_tokens(
[DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
if mm_use_im_start_end:
tokenizer.add_tokens(
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
model.resize_token_embeddings(len(tokenizer))
vision_tower = model.get_vision_tower()
if not vision_tower.is_loaded:
vision_tower.load_model()
vision_tower.to(device=device, dtype=torch.float32)
image_processor = vision_tower.image_processor
if hasattr(model.config, "max_sequence_length"):
context_len = model.config.max_sequence_length
else:
context_len = 2048
return tokenizer, model, image_processor, context_len
# Initialize conversation from templates and get conversation roles.
def get_conv_and_role(model_name):
if 'llama-2' in model_name.lower():
conv_mode = "llava_llama_2"
elif "v1" in model_name.lower():
conv_mode = "llava_v1"
elif "mpt" in model_name.lower():
conv_mode = "mpt"
else:
conv_mode = "llava_v0"
conv = conv_templates[conv_mode].copy()
if "mpt" in model_name.lower():
roles = ('user', 'assistant')
else:
roles = conv.roles
return conv, roles
# Load image from a url or path.
def load_image(image_file):
import requests
from PIL import Image
from io import BytesIO
if image_file.startswith('http://') or image_file.startswith('https://'):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert('RGB')
else:
image = Image.open(image_file).convert('RGB')
return image
def generate_image_tensor(image_file):
image = load_image(image_file)
model_cfg = {"image_aspect_ratio": 'pad'}
image_tensor = process_images([image], image_processor, model_cfg)
return image_tensor
# Generate input prompt with user input.
def get_prompt(mm_use_im_start_end, first_round, conv, user_input):
if first_round:
# first message
if mm_use_im_start_end:
user_input = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + \
DEFAULT_IM_END_TOKEN + '\n' + user_input
else:
user_input = DEFAULT_IMAGE_TOKEN + '\n' + user_input
conv.append_message(conv.roles[0], user_input)
else:
# later messages
conv.append_message(conv.roles[0], user_input)
conv.append_message(conv.roles[1], None)
return conv.get_prompt()
def get_stopping_criteria(conv, tokenizer, input_ids):
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
return stopping_criteria
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Predict Tokens using `generate()` API for LLaVA model')
parser.add_argument('--repo-id-or-model-path', type=str, default="liuhaotian/llava-v1.5-7b",
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for LLaVA model')
parser.add_argument('--repo-id-or-model-path', type=str, default="llava-hf/llava-1.5-7b-hf",
help='The huggingface repo id for the LLaVA model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--image-path-or-url', type=str,
required=True, help='Image path or url for the input image that the chat will focus on')
parser.add_argument('--n-predict', type=int, default=512,
help='Max tokens to predict')
parser.add_argument('--image-url-or-path', type=str,
default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',
help='The URL or path to the image to infer')
parser.add_argument('--prompt', type=str, default="Describe image in detail",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
model_name = get_model_name_from_path(model_path)
image_path = args.image_url_or_path
prompt = args.prompt
# Disable the redundant torch default initialization to accelerate model creation.
disable_torch_init()
model = LlavaForConditionalGeneration.from_pretrained(model_path)
model = optimize_model(model, low_bit='sym_int4').eval()
model = model.half().to("xpu")
# Load model
tokenizer, model, image_processor, _ = load_pretrained_model(model_path=model_path,
model_base=None,
model_name=model_name)
processor = AutoProcessor.from_pretrained(model_path)
# With only one line to enable IPEX-LLM optimization on model
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the optimize_model function.
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
model = optimize_model(model).to('xpu')
# here the prompt tuning refers to https://huggingface.co/llava-hf/llava-1.5-7b-hf#using-pure-transformers
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": prompt}
]
}
]
text = processor.apply_chat_template(messages, add_generation_prompt=True)
# Generate image tensor
image_tensor = generate_image_tensor(args.image_path_or_url)
if os.path.exists(image_path):
image = Image.open(image_path)
else:
image = Image.open(requests.get(image_path, stream=True).raw)
# Get conversation template and roles
conv, roles = get_conv_and_role(model_name)
inputs = processor(text=text, images=image, return_tensors="pt").to('xpu')
first_round = True
while True:
try:
user_input = input(f"{roles[0]}: ")
except EOFError:
user_input = ""
if not user_input:
print("exit...")
break
with torch.inference_mode():
# warmup
output = model.generate(**inputs, do_sample=False, max_new_tokens=args.n_predict)
print(f"{roles[1]}: ", end="")
# start inference
st = time.time()
output = model.generate(**inputs, do_sample=False, max_new_tokens=args.n_predict)
et = time.time()
prompt = get_prompt(model.config.mm_use_im_start_end, first_round, conv, user_input)
first_round = False
input_ids = tokenizer_image_token(
prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to('xpu')
stopping_criteria = get_stopping_criteria(conv, tokenizer, input_ids)
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
# Generate predicted tokens
with torch.inference_mode():
st = time.time()
output_ids = model.generate(
input_ids,
images=image_tensor,
do_sample=True,
max_new_tokens=args.n_predict,
streamer=streamer,
use_cache=True,
stopping_criteria=[stopping_criteria])
end = time.time()
#print(f'Inference time: {end-st} s')
outputs = tokenizer.decode(output_ids[0, :].cpu(), skip_special_tokens=True).strip()
conv.messages[-1][-1] = outputs
output_str = processor.decode(output[0])
print(f'Inference time: {et-st} s')
print('-'*20, 'Input Image', '-'*20)
print(image_path)
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(output_str)