ipex-llm/python/llm/src/ipex_llm/transformers/models/chatglm2.py

308 lines
14 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This file is adapted from
# https://huggingface.co/THUDM/chatglm2-6b/blob/8eb45c842594b8473f291d0f94e7bbe86ffc67d8/modeling_chatglm.py
#
import math
import torch
from typing import Optional, Tuple
from transformers.modeling_outputs import BaseModelOutputWithPast
from ipex_llm.utils.common.log4Error import invalidInputError
from ipex_llm.transformers.models.utils import restore_fp8_kv_cache, update_past_key_value
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, use_sdp, use_sdp_causal
from ipex_llm.transformers.models.utils import should_use_fuse_rope, apply_rotary_pos_emb
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states
go from (batch, num_key_value_heads, seqlen, head_dim) to
(batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads,
n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def chatglm_rms_norm_forward(self, hidden_states):
if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
import xe_addons
x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous()
output = xe_addons.rms_norm(self.weight, x_2d, self.eps)
return output.reshape(hidden_states.shape)
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
return self.weight * hidden_states.to(input_dtype)
def chatglm2_model_forward(
self,
input_ids,
position_ids: Optional[torch.Tensor]=None,
attention_mask: Optional[torch.BoolTensor]=None,
full_attention_mask: Optional[torch.BoolTensor]=None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]]=None,
inputs_embeds: Optional[torch.Tensor]=None,
use_cache: Optional[bool]=None,
output_hidden_states: Optional[bool]=None,
return_dict: Optional[bool]=None,
):
output_hidden_states = (
output_hidden_states if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if inputs_embeds is None:
batch_size, seq_length = input_ids.shape
inputs_embeds = self.embedding(input_ids)
else:
inputs_embeds = inputs_embeds.transpose(0, 1).contiguous()
seq_length, batch_size, _ = inputs_embeds.shape
input_ids = torch.empty((batch_size, seq_length),
dtype=inputs_embeds.dtype, device=inputs_embeds.device)
if full_attention_mask is None:
if (attention_mask is not None and not attention_mask.all()) or (
past_key_values and seq_length != 1):
full_attention_mask = self.get_masks(input_ids,
past_key_values,
padding_mask=attention_mask)
# ipex-llm changes begin
# 1. replace `rotary_pos_emb` with `inv_freq` and `position_ids`
# 2. generate `causal_mask` and replace `full_attention_mask` with it
if position_ids is None:
if past_key_values is None:
position_ids = torch.arange(seq_length, dtype=torch.int64, device=inputs_embeds.device)
else:
kv_length = past_key_values[0][0].size(0)
position_ids = torch.arange(kv_length, kv_length + seq_length,
dtype=torch.int64, device=inputs_embeds.device)
position_ids = position_ids.repeat(batch_size, 1)
if not getattr(self.rotary_pos_emb, "cached", False):
rot_dim = self.rotary_pos_emb.dim
base = 10000 * getattr(self.rotary_pos_emb, "rope_ratio", 1)
inv_freq = 1.0 / (base ** (torch.arange(0, rot_dim, 2,
dtype=torch.float,
device=inputs_embeds.device) / rot_dim))
inv_freq = inv_freq.to(inputs_embeds.dtype)
self.rotary_pos_emb.register_buffer("inv_freq", inv_freq, persistent=False)
self.rotary_pos_emb.cached = True
# `full_attention_mask` is not None only when
# `past_key_values` is not None and `seq_length` > 1
if full_attention_mask is not None:
causal_mask = torch.zeros([batch_size, 1, seq_length, full_attention_mask.size(-1)],
dtype=inputs_embeds.dtype, device=inputs_embeds.device)
mask_value = torch.finfo(inputs_embeds.dtype).min
causal_mask.masked_fill_(full_attention_mask, mask_value)
elif self.training or (inputs_embeds.device.type != "xpu" and past_key_values is None):
full_attention_mask = self.get_masks(input_ids,
past_key_values,
padding_mask=attention_mask)
causal_mask = torch.zeros([batch_size, 1, seq_length, full_attention_mask.size(-1)],
dtype=inputs_embeds.dtype, device=inputs_embeds.device)
mask_value = torch.finfo(inputs_embeds.dtype).min
causal_mask.masked_fill_(full_attention_mask, mask_value)
else:
causal_mask = None
# Run encoder.
hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
inputs_embeds, causal_mask,
rotary_pos_emb=(self.rotary_pos_emb.inv_freq, position_ids),
kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states
)
# ipex-llm changes end
if not return_dict:
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions]
if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
# remove code which stores first token's kv cache by tensor format
# to fix chatglm2-32k and chatglm3-128k
def chatglm2_encoder_forward(
self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None,
use_cache: Optional[bool] = True,
output_hidden_states: Optional[bool] = False,
):
if not kv_caches:
kv_caches = [None for _ in range(self.num_layers)]
presents = () if use_cache else None
if self.gradient_checkpointing and self.training:
use_cache = False
all_self_attentions = None
all_hidden_states = () if output_hidden_states else None
for index in range(self.num_layers):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer = self._get_layer(index)
if self.gradient_checkpointing and self.training:
layer_ret = torch.utils.checkpoint.checkpoint(
layer,
hidden_states,
attention_mask,
rotary_pos_emb,
kv_caches[index],
use_cache
)
else:
layer_ret = layer(
hidden_states,
attention_mask,
rotary_pos_emb,
kv_cache=kv_caches[index],
use_cache=use_cache
)
hidden_states, kv_cache = layer_ret
if use_cache:
presents = presents + (kv_cache,)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# Final layer norm.
if self.post_layer_norm:
hidden_states = self.final_layernorm(hidden_states)
return hidden_states, presents, all_hidden_states, all_self_attentions
def chatglm2_attention_forward(
self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
):
# hidden_states: [seq_len, bsz, head_dim]
q_len, bsz, _ = hidden_states.size()
# kv_cache: [seq_len, bsz, n_kv_head, head_dim] ->
# past_key_value: [bsz, n_kv_head, seq_len, head_dim]
past_key_value = None if kv_cache is None else (kv_cache[0].permute(1, 2, 0, 3),
kv_cache[1].permute(1, 2, 0, 3))
n_head = self.num_attention_heads_per_partition
n_kv_head = self.num_multi_query_groups_per_partition if self.multi_query_attention else n_head
head_dim = self.hidden_size_per_attention_head
qkv = self.query_key_value(hidden_states)
qkv = qkv.view(q_len, bsz, n_head + 2 * n_kv_head, head_dim)
# [seq_len, bsz, n_head, head_dim] -> [bsz, n_head, seq_len, head_dim]
qkv = qkv.permute(1, 2, 0, 3)
query_states, key_states, value_states = qkv.split([n_head,
n_kv_head,
n_kv_head], dim=1)
kv_seq_len = key_states.shape[2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[2]
# IPEX-LLM OPT: fuse rope
inv_freq, position_ids = rotary_pos_emb
rot_dim = inv_freq.size(-1) * 2
if should_use_fuse_rope(hidden_states, rotary_pos_emb[1], self.training):
import xe_addons
xe_addons.rotary_two_inplaced(inv_freq, position_ids,
query_states[..., :rot_dim], key_states[..., :rot_dim])
else:
idx_theta = torch.outer(position_ids[0].float(),
inv_freq.float()).to(hidden_states.dtype)
idx_theta = idx_theta.unsqueeze(0).unsqueeze(0)
cos = torch.cos(idx_theta).repeat_interleave(2, -1)
sin = torch.sin(idx_theta).repeat_interleave(2, -1)
q_rot, k_rot = apply_rotary_pos_emb(query_states[..., :rot_dim], key_states[..., :rot_dim],
cos, sin, position_ids, "chatglm")
query_states[..., :rot_dim] = q_rot[...]
key_states[..., :rot_dim] = k_rot[...]
# IPEX-LLM OPT: kv cache and quantize kv
use_quantize_kv = use_quantize_kv_cache(self.query_key_value, query_states)
key_states, value_states = update_past_key_value(
past_key_value, key_states, value_states,
kv_seq_len, use_quantize_kv, hidden_states.device
)
# past_key_value: [bsz, n_kv_head, seq_len, head_dim] -> [seq_len, bsz, n_kv_head, head_dim]
past_key_value = (key_states.permute(2, 0, 1, 3),
value_states.permute(2, 0, 1, 3)) if use_cache else None
# IPEX-LLM OPT: sdp
attn_weights = None
if use_sdp(q_len, kv_seq_len, head_dim, query_states):
import xe_addons
if use_quantize_kv:
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, attention_mask)
else:
attn_output = xe_addons.sdp(query_states, key_states, value_states, attention_mask)
elif use_sdp_causal(q_len, kv_seq_len, head_dim, query_states, self.training):
import xe_addons
if use_quantize_kv:
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states, value_states,
attention_mask)
else:
attn_output = xe_addons.sdp_causal(query_states, key_states, value_states,
attention_mask)
elif query_states.device.type == "cpu":
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, n_head // n_kv_head)
value_states = repeat_kv(value_states, n_head // n_kv_head)
if q_len == kv_seq_len:
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states, key_states, value_states, is_causal=True
)
else:
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states, key_states, value_states, attention_mask
)
else:
if use_quantize_kv:
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, n_head // n_kv_head)
value_states = repeat_kv(value_states, n_head // n_kv_head)
attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(head_dim)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
dtype=torch.float32).to(value_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
# context_layer's shape: [bsz, n_head, seq_len, head_dim] -> [seq_len, bsz, n_head * head_dim]
attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(q_len, bsz, n_head * head_dim)
output = self.dense(attn_output)
return output, past_key_value