Support pipeline parallel for glm-4-9b-chat (#11463)
This commit is contained in:
parent
e7ab93b55c
commit
9274282ef7
6 changed files with 114 additions and 6 deletions
|
|
@ -15,6 +15,7 @@ To run this example with IPEX-LLM on Intel GPUs, we have some recommended requir
|
|||
- [Qwen/Qwen1.5-32B-Chat](./run_qwen1.5_arc_2_card.sh)
|
||||
- [Qwen/Qwen1.5-MoE-A2.7B-Chat](./run_qwen1.5_arc_2_card.sh)
|
||||
- [Qwen/CodeQwen1.5-7B-Chat](./run_qwen1.5_arc_2_card.sh)
|
||||
- [THUDM/glm-4-9b-chat](./run_chatglm_arc_2_card.sh)
|
||||
- [THUDM/chatglm3-6b](./run_chatglm_arc_2_card.sh)
|
||||
- [baichuan-inc/Baichuan2-7B-Chat](./run_baichuan2_arc_2_card.sh)
|
||||
- [baichuan-inc/Baichuan2-13B-Chat](./run_baichuan2_arc_2_card.sh)
|
||||
|
|
@ -116,11 +117,12 @@ bash run_qwen1.5_arc_2_card.sh
|
|||
<details>
|
||||
<summary> Show chatglm example </summary>
|
||||
|
||||
#### Run chatglm3-6B on two Intel Arc A770
|
||||
#### Run glm-4-9b-chat / chatglm3-6B on two Intel Arc A770
|
||||
|
||||
You could specify `--repo-id-or-model-path` in the test script to be the huggingface repo id for chatglm to be downloaded, or the path to the huggingface checkpoint folder. Besides, you could change `NUM_GPUS` to the number of GPUs you have on your machine.
|
||||
|
||||
```bash
|
||||
pip install transformers==4.37.0 "tiktoken>=0.7.0"
|
||||
bash run_chatglm_arc_2_card.sh
|
||||
```
|
||||
|
||||
|
|
|
|||
|
|
@ -29,3 +29,7 @@ NUM_GPUS=2 # number of used GPU
|
|||
# To run chatglm3-6b
|
||||
CCL_ZE_IPC_EXCHANGE=sockets torchrun --standalone --nnodes=1 --nproc-per-node $NUM_GPUS \
|
||||
generate.py --repo-id-or-model-path 'THUDM/chatglm3-6b' --gpu-num $NUM_GPUS --low-bit 'sym_int4'
|
||||
|
||||
# # To run glm-4-9b-chat
|
||||
# CCL_ZE_IPC_EXCHANGE=sockets torchrun --standalone --nnodes=1 --nproc-per-node $NUM_GPUS \
|
||||
# generate.py --repo-id-or-model-path 'THUDM/glm-4-9b-chat' --gpu-num $NUM_GPUS --low-bit 'sym_int4'
|
||||
|
|
|
|||
|
|
@ -1118,6 +1118,7 @@ def _optimize_post(model, lightweight_bmm=False):
|
|||
from ipex_llm.transformers.models.chatglm4 import chatglm4_attention_forward
|
||||
from ipex_llm.transformers.models.chatglm4 import chatglm4_model_forward
|
||||
from ipex_llm.transformers.models.chatglm2 import chatglm_rms_norm_forward
|
||||
from ipex_llm.transformers.models.chatglm4 import chatglm4_encoder_forward
|
||||
convert_forward(model,
|
||||
module.SelfAttention,
|
||||
chatglm4_attention_forward)
|
||||
|
|
@ -1127,6 +1128,9 @@ def _optimize_post(model, lightweight_bmm=False):
|
|||
convert_forward(model,
|
||||
module.RMSNorm,
|
||||
chatglm_rms_norm_forward)
|
||||
convert_forward(model,
|
||||
module.GLMTransformer,
|
||||
chatglm4_encoder_forward)
|
||||
|
||||
elif "mpt" in model.config.model_type:
|
||||
if model.config.architectures is not None:
|
||||
|
|
|
|||
|
|
@ -80,6 +80,8 @@ def chatglm2_model_forward(
|
|||
else:
|
||||
inputs_embeds = inputs_embeds.transpose(0, 1).contiguous()
|
||||
seq_length, batch_size, _ = inputs_embeds.shape
|
||||
input_ids = torch.empty((batch_size, seq_length),
|
||||
dtype=inputs_embeds.dtype, device=inputs_embeds.device)
|
||||
|
||||
if full_attention_mask is None:
|
||||
if (attention_mask is not None and not attention_mask.all()) or (
|
||||
|
|
|
|||
|
|
@ -46,10 +46,13 @@ def chatglm4_model_forward(
|
|||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
batch_size, seq_length = input_ids.shape
|
||||
|
||||
if inputs_embeds is None:
|
||||
batch_size, seq_length = input_ids.shape
|
||||
inputs_embeds = self.embedding(input_ids)
|
||||
else:
|
||||
batch_size, seq_length, _ = inputs_embeds.shape
|
||||
input_ids = torch.empty((batch_size, seq_length),
|
||||
dtype=inputs_embeds.dtype, device=inputs_embeds.device)
|
||||
|
||||
if full_attention_mask is None:
|
||||
if (attention_mask is not None and not attention_mask.all()) or\
|
||||
|
|
@ -234,3 +237,69 @@ def chatglm4_attention_forward(
|
|||
output = self.dense(attn_output)
|
||||
|
||||
return output, past_key_value
|
||||
|
||||
|
||||
def chatglm4_encoder_forward(
|
||||
self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None,
|
||||
use_cache: Optional[bool] = True,
|
||||
output_hidden_states: Optional[bool] = False,
|
||||
):
|
||||
if not kv_caches:
|
||||
kv_caches = [None for _ in range(self.num_layers)]
|
||||
presents = () if use_cache else None
|
||||
if self.gradient_checkpointing and self.training:
|
||||
if use_cache:
|
||||
use_cache = False
|
||||
|
||||
all_self_attentions = None
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
for index in range(self.num_layers):
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
layer = self._get_layer(index)
|
||||
if self.gradient_checkpointing and self.training:
|
||||
layer_ret = torch.utils.checkpoint.checkpoint(
|
||||
layer,
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
rotary_pos_emb,
|
||||
kv_caches[index],
|
||||
use_cache,
|
||||
use_reentrant=False
|
||||
)
|
||||
else:
|
||||
# if kv_caches[index] is not None:
|
||||
layer_ret = layer(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
rotary_pos_emb,
|
||||
kv_cache=kv_caches[index],
|
||||
use_cache=use_cache
|
||||
)
|
||||
hidden_states, kv_cache = layer_ret
|
||||
if use_cache:
|
||||
# token by token decoding, use tuple format
|
||||
if kv_caches[0] is not None:
|
||||
presents = presents + (kv_cache,)
|
||||
# prefilling in decoding, use tensor format to save cuda memory
|
||||
else:
|
||||
if len(presents) == 0:
|
||||
presents = kv_cache
|
||||
else:
|
||||
# bigdl-llm change starts
|
||||
# to fix first token's kv cache error of tensor format in pipeline parallel
|
||||
if isinstance(kv_cache, tuple):
|
||||
kv_cache = torch.tensor(kv_cache,
|
||||
dtype=hidden_states.dtype).to(hidden_states.device)
|
||||
# bigdl-llm change ends
|
||||
presents = torch.cat((presents, kv_cache.to(presents.device)), dim=0)
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
# Final layer norm.
|
||||
if self.post_layer_norm:
|
||||
hidden_states = self.final_layernorm(hidden_states)
|
||||
|
||||
return hidden_states, presents, all_hidden_states, all_self_attentions
|
||||
|
|
|
|||
|
|
@ -94,6 +94,8 @@ class Dummy_GLMBlock(nn.Module):
|
|||
def forward(
|
||||
self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True,
|
||||
):
|
||||
if kv_cache is None:
|
||||
return hidden_states, ()
|
||||
return hidden_states, kv_cache
|
||||
|
||||
|
||||
|
|
@ -282,8 +284,20 @@ def pipeline_parallel_generate(self,
|
|||
"make sure that `pad_token_id` is defined.")
|
||||
next_ids = next_ids * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
|
||||
|
||||
# Temporarily specify as Baichuan and ChatGLM
|
||||
if self.config.model_type in ["baichuan", "chatglm"] and local_rank != 0:
|
||||
if self.config.model_type == "chatglm" and self.config.num_layers == 40:
|
||||
# for glm-4-9b-chat
|
||||
if step == 0:
|
||||
value_placeholder = torch.empty_like((outputs.past_key_values)[-1][0])
|
||||
past_key_values_placeholder = tuple(
|
||||
(value_placeholder, value_placeholder) for _ in range(layer_start)
|
||||
) + (outputs.past_key_values)[: layer_end - layer_start] + tuple(
|
||||
(value_placeholder, value_placeholder) for _ in range(layer_end, num_layers)
|
||||
)
|
||||
_past_key_values = past_key_values_placeholder
|
||||
else:
|
||||
_past_key_values = outputs.past_key_values
|
||||
elif self.config.model_type in ["baichuan", "chatglm"] and local_rank != 0:
|
||||
# for baichuan2 and chatglm3
|
||||
value_placeholder = torch.empty_like((outputs.past_key_values)[-1][0])
|
||||
past_key_values_placeholder = tuple(
|
||||
(value_placeholder, value_placeholder) for _ in range(layer_start)
|
||||
|
|
@ -421,7 +435,20 @@ class ModelRunner:
|
|||
attention_mask=attention_mask,
|
||||
use_cache=True,)
|
||||
|
||||
if self.model.config.model_type in ["baichuan", "chatglm"] and self.rank > 0:
|
||||
if self.model.config.model_type == "chatglm" and self.model.config.num_layers == 40:
|
||||
# for glm-4-9b-chat
|
||||
if self.past_key_values_dict.get(cur_id, None) is None:
|
||||
value_placeholder = torch.empty_like((output.past_key_values)[-1][0])
|
||||
past_key_values_placeholder = tuple(
|
||||
(value_placeholder, value_placeholder) for _ in range(layer_start)
|
||||
) + (output.past_key_values)[: layer_end - layer_start] + tuple(
|
||||
(value_placeholder, value_placeholder) for _ in range(layer_end, num_layers)
|
||||
)
|
||||
_past_key_values = past_key_values_placeholder
|
||||
else:
|
||||
_past_key_values = output.past_key_values
|
||||
elif self.model.config.model_type in ["baichuan", "chatglm"] and self.rank > 0:
|
||||
# for baichuan2 and chatglm3
|
||||
value_placeholder = torch.empty_like((output.past_key_values)[-1][0])
|
||||
past_key_values_placeholder = tuple(
|
||||
(value_placeholder, value_placeholder) for _ in range(layer_start)
|
||||
|
|
|
|||
Loading…
Reference in a new issue