*ipex-llm's accelerate has been upgraded to 0.23.0. Remove accelerate 0.23.0 install command in README and docker。
		
			
				
	
	
	
	
		
			1.5 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			1.5 KiB
		
	
	
	
	
	
	
	
Finetuning on Intel GPU using Hugging Face PEFT code
This example demonstrates how to easily run LLM finetuning application of PEFT use IPEX-LLM 4bit optimizations using Intel GPUs. By applying IPEX-LLM patch, you could run Hugging Face PEFT code on Intel GPUs using IPEX-LLM optimization without modification.
Note, this example is just used for illustrating related usage and don't guarantee convergence of training.
0. Requirements
To run this example with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to here for more information.
1. Install
conda create -n llm python=3.11
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
pip install transformers==4.36.0 datasets
pip install fire peft==0.10.0
pip install oneccl_bind_pt==2.1.100 --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ # necessary to run distributed finetuning
pip install bitsandbytes scipy
2. Configures OneAPI environment variables
source /opt/intel/oneapi/setvars.sh
3. Finetune
This example shows how to run Alpaca LoRA Training directly on Intel GPU.
cd alpaca-lora
python ./finetune.py --base_model "meta-llama/Llama-2-7b-hf" \
                     --data_path "yahma/alpaca-cleaned"