ipex-llm/docs/readthedocs/source/doc/PythonAPI/DLlib/optim-Methods.md
Shengsheng Huang f2e4c40cee change the readthedocs theme and reorg the sections (#6056)
* refactor toc

* refactor toc

* Change to pydata-sphinx-theme and update packages requirement list for ReadtheDocs

* Remove customized css for old theme

* Add index page to each top bar section and limit dropdown maximum to be 4

* Use js to change 'More' to 'Libraries'

* Add custom.css to conf.py for further css changes

* Add BigDL logo and search bar

* refactor toc

* refactor toc and add overview

* refactor toc and add overview

* refactor toc and add overview

* refactor get started

* add paper and video section

* add videos

* add grid columns in landing page

* add document roadmap to index

* reapply search bar and github icon commit

* reorg orca and chronos sections

* Test: weaken ads by js

* update: change left attrbute

* update: add comments

* update: change opacity to 0.7

* Remove useless theme template override for old theme

* Add sidebar releases component in the home page

* Remove sidebar search and restore top nav search button

* Add BigDL handouts

* Add back to homepage button to pages except from the home page

* Update releases contents & styles in left sidebar

* Add version badge to the top bar

* Test: weaken ads by js

* update: add comments

* remove landing page contents

* rfix chronos install

* refactor install

* refactor chronos section titles

* refactor nano index

* change chronos landing

* revise chronos landing page

* add document navigator to nano landing page

* revise install landing page

* Improve css of versions in sidebar

* Make handouts image pointing to a page in new tab

* add win guide to install

* add dliib installation

* revise title bar

* rename index files

* add index page for user guide

* add dllib and orca API

* update user guide landing page

* refactor side bar

* Remove extra style configuration of card components & make different card usage consistent

* Remove extra styles for Nano how-to guides

* Remove extra styles for Chronos how-to guides

* Remove dark mode for now

* Update index page description

* Add decision tree for choosing BigDL libraries in index page

* add dllib models api, revise core layers formats

* Change primary & info color in light mode

* Restyle card components

* Restructure Chronos landing page

* Update card style

* Update BigDL library selection decision tree

* Fix failed Chronos tutorials filter

* refactor PPML documents

* refactor and add friesian documents

* add friesian arch diagram

* update landing pages and fill key features guide index page

* Restyle link card component

* Style video frames in PPML sections

* Adjust Nano landing page

* put api docs to the last in index for convinience

* Make badge horizontal padding smaller & small changes

* Change the second letter of all header titles to be small capitalizd

* Small changes on Chronos index page

* Revise decision tree to make it smaller

* Update: try to change the position of ads.

* Bugfix: deleted nonexist file config

* Update: update ad JS/CSS/config

* Update: change ad.

* Update: delete my template and change files.

* Update: change chronos installation table color.

* Update: change table font color to --pst-color-primary-text

* Remove old contents in landing page sidebar

* Restyle badge for usage in card footer again

* Add quicklinks template on landing page sidebar

* add quick links

* Add scala logo

* move tf, pytorch out of the link

* change orca key features cards

* fix typo

* fix a mistake in wording

* Restyle badge for card footer

* Update decision tree

* Remove useless html templates

* add more api docs and update tutorials in dllib

* update chronos install using new style

* merge changes in nano doc from master

* fix quickstart links in sidebar quicklinks

* Make tables responsive

* Fix overflow in api doc

* Fix list indents problems in [User guide] section

* Further fixes to nested bullets contents in [User Guide] section

* Fix strange title in Nano 5-min doc

* Fix list indent problems in [DLlib] section

* Fix misnumbered list problems and other small fixes for [Chronos] section

* Fix list indent problems and other small fixes for [Friesian] section

* Fix list indent problem and other small fixes for [PPML] section

* Fix list indent problem for developer guide

* Fix list indent problem for [Cluster Serving] section

* fix dllib links

* Fix wrong relative link in section landing page

Co-authored-by: Yuwen Hu <yuwen.hu@intel.com>
Co-authored-by: Juntao Luo <1072087358@qq.com>
2022-10-18 15:35:31 +08:00

12 KiB

Optimizer


Adam

Scala:

val optim = new Adam(learningRate=1e-3, learningRateDecay=0.0, beta1=0.9, beta2=0.999, Epsilon=1e-8)

Python:

optim = Adam(learningrate=1e-3, learningrate_decay=0.0, beta1=0.9, beta2=0.999, epsilon=1e-8, bigdl_type="float")

An implementation of Adam optimization, first-order gradient-based optimization of stochastic objective functions. http://arxiv.org/pdf/1412.6980.pdf

learningRate learning rate. Default value is 1e-3.

learningRateDecay learning rate decay. Default value is 0.0.

beta1 first moment coefficient. Default value is 0.9.

beta2 second moment coefficient. Default value is 0.999.

Epsilon for numerical stability. Default value is 1e-8.

Scala example:

import com.intel.analytics.bigdl.dllib.optim._
import com.intel.analytics.bigdl.dllib.tensor.Tensor
import com.intel.analytics.bigdl.dllib.tensor.TensorNumericMath.TensorNumeric.NumericFloat
import com.intel.analytics.bigdl.dllib.utils.T

val optm = new Adam(learningRate=0.002)
def rosenBrock(x: Tensor[Float]): (Float, Tensor[Float]) = {
    // (1) compute f(x)
    val d = x.size(1)

    // x1 = x(i)
    val x1 = Tensor[Float](d - 1).copy(x.narrow(1, 1, d - 1))
    // x(i + 1) - x(i)^2
    x1.cmul(x1).mul(-1).add(x.narrow(1, 2, d - 1))
    // 100 * (x(i + 1) - x(i)^2)^2
    x1.cmul(x1).mul(100)

    // x0 = x(i)
    val x0 = Tensor[Float](d - 1).copy(x.narrow(1, 1, d - 1))
    // 1-x(i)
    x0.mul(-1).add(1)
    x0.cmul(x0)
    // 100*(x(i+1) - x(i)^2)^2 + (1-x(i))^2
    x1.add(x0)

    val fout = x1.sum()

    // (2) compute f(x)/dx
    val dxout = Tensor[Float]().resizeAs(x).zero()
    // df(1:D-1) = - 400*x(1:D-1).*(x(2:D)-x(1:D-1).^2) - 2*(1-x(1:D-1));
    x1.copy(x.narrow(1, 1, d - 1))
    x1.cmul(x1).mul(-1).add(x.narrow(1, 2, d - 1)).cmul(x.narrow(1, 1, d - 1)).mul(-400)
    x0.copy(x.narrow(1, 1, d - 1)).mul(-1).add(1).mul(-2)
    x1.add(x0)
    dxout.narrow(1, 1, d - 1).copy(x1)

    // df(2:D) = df(2:D) + 200*(x(2:D)-x(1:D-1).^2);
    x0.copy(x.narrow(1, 1, d - 1))
    x0.cmul(x0).mul(-1).add(x.narrow(1, 2, d - 1)).mul(200)
    dxout.narrow(1, 2, d - 1).add(x0)

    (fout, dxout)
  }
val x = Tensor(2).fill(0)
> print(optm.optimize(rosenBrock, x))
(0.0019999996
0.0
[com.intel.analytics.bigdl.tensor.DenseTensor$mcD$sp of size 2],[D@302d88d8)

Python example:

optim_method = Adam(learningrate=0.002)

optimizer = Optimizer(
    model=mlp_model,
    training_rdd=train_data,
    criterion=ClassNLLCriterion(),
    optim_method=optim_method,
    end_trigger=MaxEpoch(20),
    batch_size=32)

SGD

Scala:

val optimMethod = new SGD(learningRate= 1e-3,learningRateDecay=0.0,
                      weightDecay=0.0,momentum=0.0,dampening=Double.MaxValue,
                      nesterov=false,learningRateSchedule=Default(),
                      learningRates=null,weightDecays=null)

Python:

optim_method = SGD(learningrate=1e-3,learningrate_decay=0.0,weightdecay=0.0,
                   momentum=0.0,dampening=DOUBLEMAX,nesterov=False,
                   leaningrate_schedule=None,learningrates=None,
                   weightdecays=None,bigdl_type="float")

A plain implementation of SGD which provides optimize method. After setting optimization method when create Optimize, Optimize will call optimization method at the end of each iteration.

Scala example:

val optimMethod = new SGD[Float](learningRate= 1e-3,learningRateDecay=0.0,
                               weightDecay=0.0,momentum=0.0,dampening=Double.MaxValue,
                               nesterov=false,learningRateSchedule=Default(),
                               learningRates=null,weightDecays=null)
optimizer.setOptimMethod(optimMethod)

Python example:

optim_method = SGD(learningrate=1e-3,learningrate_decay=0.0,weightdecay=0.0,
                  momentum=0.0,dampening=DOUBLEMAX,nesterov=False,
                  leaningrate_schedule=None,learningrates=None,
                  weightdecays=None,bigdl_type="float")

optimizer = Optimizer(
    model=mlp_model,
    training_rdd=train_data,
    criterion=ClassNLLCriterion(),
    optim_method=optim_method,
    end_trigger=MaxEpoch(20),
    batch_size=32)

Adadelta

AdaDelta implementation for SGD It has been proposed in ADADELTA: An Adaptive Learning Rate Method. http://arxiv.org/abs/1212.5701.

Scala:

val optimMethod = new Adadelta(decayRate = 0.9, Epsilon = 1e-10)

Python:

optim_method = AdaDelta(decayrate = 0.9, epsilon = 1e-10)

Scala example:

optimizer.setOptimMethod(new Adadelta(0.9, 1e-10))

Python example:

optimizer = Optimizer(
    model=mlp_model,
    training_rdd=train_data,
    criterion=ClassNLLCriterion(),
    optim_method=Adadelta(0.9, 0.00001),
    end_trigger=MaxEpoch(20),
    batch_size=32)

RMSprop

An implementation of RMSprop (Reference: http://arxiv.org/pdf/1308.0850v5.pdf, Sec 4.2)

  • learningRate : learning rate
  • learningRateDecay : learning rate decay
  • decayRate : decayRate, also called rho
  • Epsilon : for numerical stability

Adamax

An implementation of Adamax http://arxiv.org/pdf/1412.6980.pdf

Arguments:

  • learningRate : learning rate
  • beta1 : first moment coefficient
  • beta2 : second moment coefficient
  • Epsilon : for numerical stability

Returns:

the new x vector and the function list {fx}, evaluated before the update

Adagrad

Scala:

val adagrad = new Adagrad(learningRate = 1e-3,
                          learningRateDecay = 0.0,
                          weightDecay = 0.0)

An implementation of Adagrad. See the original paper: http://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

Scala example:

import com.intel.analytics.bigdl.dllib.tensor.TensorNumericMath.TensorNumeric.NumericFloat
import com.intel.analytics.bigdl.dllib.optim._
import com.intel.analytics.bigdl.dllib.tensor._
import com.intel.analytics.bigdl.dllib.utils.T

val adagrad = new Adagrad(0.01, 0.0, 0.0)
    def feval(x: Tensor[Float]): (Float, Tensor[Float]) = {
      // (1) compute f(x)
      val d = x.size(1)
      // x1 = x(i)
      val x1 = Tensor[Float](d - 1).copy(x.narrow(1, 1, d - 1))
      // x(i + 1) - x(i)^2
      x1.cmul(x1).mul(-1).add(x.narrow(1, 2, d - 1))
      // 100 * (x(i + 1) - x(i)^2)^2
      x1.cmul(x1).mul(100)
      // x0 = x(i)
      val x0 = Tensor[Float](d - 1).copy(x.narrow(1, 1, d - 1))
      // 1-x(i)
      x0.mul(-1).add(1)
      x0.cmul(x0)
      // 100*(x(i+1) - x(i)^2)^2 + (1-x(i))^2
      x1.add(x0)
      val fout = x1.sum()
      // (2) compute f(x)/dx
      val dxout = Tensor[Float]().resizeAs(x).zero()
      // df(1:D-1) = - 400*x(1:D-1).*(x(2:D)-x(1:D-1).^2) - 2*(1-x(1:D-1));
      x1.copy(x.narrow(1, 1, d - 1))
      x1.cmul(x1).mul(-1).add(x.narrow(1, 2, d - 1)).cmul(x.narrow(1, 1, d - 1)).mul(-400)
      x0.copy(x.narrow(1, 1, d - 1)).mul(-1).add(1).mul(-2)
      x1.add(x0)
      dxout.narrow(1, 1, d - 1).copy(x1)
      // df(2:D) = df(2:D) + 200*(x(2:D)-x(1:D-1).^2);
      x0.copy(x.narrow(1, 1, d - 1))
      x0.cmul(x0).mul(-1).add(x.narrow(1, 2, d - 1)).mul(200)
      dxout.narrow(1, 2, d - 1).add(x0)
      (fout, dxout)
    }
val x = Tensor(2).fill(0)
val config = T("learningRate" -> 1e-1)
for (i <- 1 to 10) {
  adagrad.optimize(feval, x, config, config)
}
x after optimize: 0.27779138
0.07226955
[com.intel.analytics.bigdl.tensor.DenseTensor$mcF$sp of size 2]

LBFGS

Scala:

val optimMethod = new LBFGS(maxIter=20, maxEval=Double.MaxValue,
                            tolFun=1e-5, tolX=1e-9, nCorrection=100,
                            learningRate=1.0, lineSearch=None, lineSearchOptions=None)

Python:

optim_method = LBFGS(max_iter=20, max_eval=Double.MaxValue, \
                 tol_fun=1e-5, tol_x=1e-9, n_correction=100, \
                 learning_rate=1.0, line_search=None, line_search_options=None)

This implementation of L-BFGS relies on a user-provided line search function (state.lineSearch). If this function is not provided, then a simple learningRate is used to produce fixed size steps. Fixed size steps are much less costly than line searches, and can be useful for stochastic problems.

The learning rate is used even when a line search is provided.This is also useful for large-scale stochastic problems, where opfunc is a noisy approximation of f(x). In that case, the learning rate allows a reduction of confidence in the step size.

Parameters:

  • maxIter - Maximum number of iterations allowed. Default: 20
  • maxEval - Maximum number of function evaluations. Default: Double.MaxValue
  • tolFun - Termination tolerance on the first-order optimality. Default: 1e-5
  • tolX - Termination tol on progress in terms of func/param changes. Default: 1e-9
  • learningRate - the learning rate. Default: 1.0
  • lineSearch - A line search function. Default: None
  • lineSearchOptions - If no line search provided, then a fixed step size is used. Default: None

Scala example:

val optimMethod = new LBFGS(maxIter=20, maxEval=Double.MaxValue,
                            tolFun=1e-5, tolX=1e-9, nCorrection=100,
                            learningRate=1.0, lineSearch=None, lineSearchOptions=None)
optimizer.setOptimMethod(optimMethod)

Python example:

optim_method = LBFGS(max_iter=20, max_eval=DOUBLEMAX, \
                 tol_fun=1e-5, tol_x=1e-9, n_correction=100, \
                 learning_rate=1.0, line_search=None, line_search_options=None)

optimizer = Optimizer(
    model=mlp_model,
    training_rdd=train_data,
    criterion=ClassNLLCriterion(),
    optim_method=optim_method,
    end_trigger=MaxEpoch(20),
    batch_size=32)

Ftrl

Scala:

val optimMethod = new Ftrl(
  learningRate = 1e-3, learningRatePower = -0.5,
  initialAccumulatorValue = 0.1, l1RegularizationStrength = 0.0,
  l2RegularizationStrength = 0.0, l2ShrinkageRegularizationStrength = 0.0)

Python:

optim_method = Ftrl(learningrate = 1e-3, learningrate_power = -0.5, \
                 initial_accumulator_value = 0.1, l1_regularization_strength = 0.0, \
                 l2_regularization_strength = 0.0, l2_shrinkage_regularization_strength = 0.0)

An implementation of (Ftrl)[https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf.] Support L1 penalty, L2 penalty and shrinkage-type L2 penalty.

Parameters:

  • learningRate: learning rate
  • learningRatePower: double, must be less or equal to zero. Default is -0.5.
  • initialAccumulatorValue: double, the starting value for accumulators, require zero or positive values. Default is 0.1.
  • l1RegularizationStrength: double, must be greater or equal to zero. Default is zero.
  • l2RegularizationStrength: double, must be greater or equal to zero. Default is zero.
  • l2ShrinkageRegularizationStrength: double, must be greater or equal to zero. Default is zero. This differs from l2RegularizationStrength above. L2 above is a stabilization penalty, whereas this one is a magnitude penalty.

Scala example:

val optimMethod = new Ftrl(learningRate = 5e-3, learningRatePower = -0.5,
  initialAccumulatorValue = 0.01)
optimizer.setOptimMethod(optimMethod)

Python example:

optim_method = Ftrl(learningrate = 5e-3, \
    learningrate_power = -0.5, \
    initial_accumulator_value = 0.01)

optimizer = Optimizer(
    model=mlp_model,
    training_rdd=train_data,
    criterion=ClassNLLCriterion(),
    optim_method=optim_method,
    end_trigger=MaxEpoch(20),
    batch_size=32)

ParallelAdam

Multi-Thread version of Adam.

Scala:

val optim = new ParallelAdam(learningRate=1e-3, learningRateDecay=0.0, beta1=0.9, beta2=0.999, Epsilon=1e-8, parallelNum=Engine.coreNumber())

Python:

optim = ParallelAdam(learningrate=1e-3, learningrate_decay=0.0, beta1=0.9, beta2=0.999, epsilon=1e-8, parallel_num=get_node_and_core_number()[1], bigdl_type="float")