* Add initial hf huggingface GPU example * Small fix * Add llama3 gpu pytorch model example * Add llama 3 hf transformers CPU example * Add llama 3 pytorch model CPU example * Fixes * Small fix * Small fixes * Small fix * Small fix * Add links * update repo id * change prompt tuning url * remove system header if there is no system prompt --------- Co-authored-by: Yuwen Hu <yuwen.hu@intel.com> Co-authored-by: Yuwen Hu <54161268+Oscilloscope98@users.noreply.github.com>
		
			
				
	
	
		
			93 lines
		
	
	
	
		
			4.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			93 lines
		
	
	
	
		
			4.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
import torch
 | 
						|
import time
 | 
						|
import argparse
 | 
						|
 | 
						|
from transformers import AutoModelForCausalLM, AutoTokenizer
 | 
						|
from ipex_llm import optimize_model
 | 
						|
 | 
						|
# you could tune the prompt based on your own model,
 | 
						|
# here the prompt tuning refers to https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-3
 | 
						|
DEFAULT_SYSTEM_PROMPT = """\
 | 
						|
"""
 | 
						|
 | 
						|
def get_prompt(user_input: str, chat_history: list[tuple[str, str]],
 | 
						|
               system_prompt: str) -> str:
 | 
						|
    prompt_texts = [f'<|begin_of_text|>']
 | 
						|
 | 
						|
    if system_prompt != '':
 | 
						|
        prompt_texts.append(f'<|start_header_id|>system<|end_header_id|>\n{system_prompt}<|eot_id|>')
 | 
						|
 | 
						|
    for history_input, history_response in chat_history:
 | 
						|
        prompt_texts.append(f'<|start_header_id|>user<|end_header_id|>\n{history_input.strip()}<|eot_id|>')
 | 
						|
        prompt_texts.append(f'<|start_header_id|>assistant<|end_header_id|>\n{history_response.strip()}<|eot_id|>')
 | 
						|
 | 
						|
    prompt_texts.append(f'<|start_header_id|>user<|end_header_id|>\n{user_input.strip()}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n')
 | 
						|
    return ''.join(prompt_texts)
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama3 model')
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Meta-Llama-3-8B-Instruct",
 | 
						|
                        help='The huggingface repo id for the Llama3 (e.g. `meta-llama/Meta-Llama-3-8B-Instruct`) to be downloaded'
 | 
						|
                             ', or the path to the huggingface checkpoint folder')
 | 
						|
    parser.add_argument('--prompt', type=str, default="What is AI?",
 | 
						|
                        help='Prompt to infer')
 | 
						|
    parser.add_argument('--n-predict', type=int, default=32,
 | 
						|
                        help='Max tokens to predict')
 | 
						|
 | 
						|
    args = parser.parse_args()
 | 
						|
    model_path = args.repo_id_or_model_path
 | 
						|
 | 
						|
    # Load model
 | 
						|
    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
						|
                                                 trust_remote_code=True,
 | 
						|
                                                 torch_dtype='auto',
 | 
						|
                                                 low_cpu_mem_usage=True,
 | 
						|
                                                 use_cache=True)
 | 
						|
 | 
						|
    # With only one line to enable IPEX-LLM optimization on model
 | 
						|
    # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the optimize_model function.
 | 
						|
    # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
 | 
						|
    model = optimize_model(model)
 | 
						|
 | 
						|
    model = model.half().to('xpu')
 | 
						|
 | 
						|
    # Load tokenizer
 | 
						|
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    
 | 
						|
    # Generate predicted tokens
 | 
						|
    with torch.inference_mode():
 | 
						|
        prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
 | 
						|
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
						|
        # ipex_llm model needs a warmup, then inference time can be accurate
 | 
						|
        output = model.generate(input_ids,
 | 
						|
                                max_new_tokens=args.n_predict)
 | 
						|
 | 
						|
        # start inference
 | 
						|
        st = time.time()
 | 
						|
        output = model.generate(input_ids,
 | 
						|
                                max_new_tokens=args.n_predict)
 | 
						|
        torch.xpu.synchronize()
 | 
						|
        end = time.time()
 | 
						|
        output = output.cpu()
 | 
						|
        output_str = tokenizer.decode(output[0], skip_special_tokens=False)
 | 
						|
        print(f'Inference time: {end-st} s')
 | 
						|
        print('-'*20, 'Prompt', '-'*20)
 | 
						|
        print(prompt)
 | 
						|
        print('-'*20, 'Output (skip_special_tokens=False)', '-'*20)
 | 
						|
        print(output_str)
 |