Initial llama3 example (#10799)

* Add initial hf huggingface GPU example

* Small fix

* Add llama3 gpu pytorch model example

* Add llama 3 hf transformers CPU example

* Add llama 3 pytorch model CPU example

* Fixes

* Small fix

* Small fixes

* Small fix

* Small fix

* Add links

* update repo id

* change prompt tuning url

* remove system header if there is no system prompt

---------

Co-authored-by: Yuwen Hu <yuwen.hu@intel.com>
Co-authored-by: Yuwen Hu <54161268+Oscilloscope98@users.noreply.github.com>
This commit is contained in:
Yang Wang 2024-04-18 11:01:33 -07:00 committed by GitHub
parent 754b0ffecf
commit 8153c3008e
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
10 changed files with 763 additions and 0 deletions

View file

@ -128,6 +128,7 @@ Over 50 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaM
|------------|----------------------------------------------------------------|-----------------------------------------------------------------|
| LLaMA *(such as Vicuna, Guanaco, Koala, Baize, WizardLM, etc.)* | [link1](python/llm/example/CPU/Native-Models), [link2](python/llm/example/CPU/HF-Transformers-AutoModels/Model/vicuna) |[link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/vicuna)|
| LLaMA 2 | [link1](python/llm/example/CPU/Native-Models), [link2](python/llm/example/CPU/HF-Transformers-AutoModels/Model/llama2) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/llama2) |
| LLaMA 3 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/llama3) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/llama3) |
| ChatGLM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/chatglm) | |
| ChatGLM2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/chatglm2) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/chatglm2) |
| ChatGLM3 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/chatglm3) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/chatglm3) |

View file

@ -219,6 +219,13 @@ Verified Models
<a href="https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Model/llama2">link</a>
<a href="https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Model/llama2">link</a></td>
</tr>
<tr>
<td>LLaMA 3</td>
<td>
<a href="https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/llama3">link</a></td>
<td>
<a href="https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Model/llama3">link</a></td>
</tr>
<tr>
<td>ChatGLM</td>
<td>

View file

@ -0,0 +1,68 @@
# Llama3
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Llama3 models. For illustration purposes, we utilize the [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) as a reference Llama3 model.
## 0. Requirements
To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a Llama3 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations.
### 1. Install
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11
conda activate llm
pip install --pre --upgrade ipex-llm[all] # install ipex-llm with 'all' option
# transformers>=4.33.0 is required for Llama3 with IPEX-LLM optimizations
pip install transformers==4.37.0
```
### 2. Run
```
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama3 model (e.g. `meta-llama/Meta-Llama-3-8B-Instruct`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Meta-Llama-3-8B-Instruct'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
> **Note**: When loading the model in 4-bit, IPEX-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
>
> Please select the appropriate size of the Llama3 model based on the capabilities of your machine.
#### 2.1 Client
On client Windows machine, it is recommended to run directly with full utilization of all cores:
```powershell
python ./generate.py
```
#### 2.2 Server
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
E.g. on Linux,
```bash
# set IPEX-LLM env variables
source ipex-llm-init
# e.g. for a server with 48 cores per socket
export OMP_NUM_THREADS=48
numactl -C 0-47 -m 0 python ./generate.py
```
#### 2.3 Sample Output
#### [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
<|begin_of_text|><|start_header_id|>user<|end_header_id|>
What is AI?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
-------------------- Output (skip_special_tokens=False) --------------------
<|begin_of_text|><|start_header_id|>user<|end_header_id|>
What is AI?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
A question that gets to the heart of the 21st century!
Artificial Intelligence (AI) refers to the development of computer systems that can perform tasks that
```

View file

@ -0,0 +1,81 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
from ipex_llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
# you could tune the prompt based on your own model,
# here the prompt tuning refers to https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-3
DEFAULT_SYSTEM_PROMPT = """\
"""
def get_prompt(user_input: str, chat_history: list[tuple[str, str]],
system_prompt: str) -> str:
prompt_texts = [f'<|begin_of_text|>']
if system_prompt != '':
prompt_texts.append(f'<|start_header_id|>system<|end_header_id|>\n{system_prompt}<|eot_id|>')
for history_input, history_response in chat_history:
prompt_texts.append(f'<|start_header_id|>user<|end_header_id|>\n{history_input.strip()}<|eot_id|>')
prompt_texts.append(f'<|start_header_id|>assistant<|end_header_id|>\n{history_response.strip()}<|eot_id|>')
prompt_texts.append(f'<|start_header_id|>user<|end_header_id|>\n{user_input.strip()}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n')
return ''.join(prompt_texts)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama3 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Meta-Llama-3-8B-Instruct",
help='The huggingface repo id for the Llama3 (e.g. `meta-llama/Meta-Llama-3-8B-Instruct`) to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=True,
trust_remote_code=True,
use_cache=True)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
# Generate predicted tokens
with torch.inference_mode():
prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
input_ids = tokenizer.encode(prompt, return_tensors="pt")
st = time.time()
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
end = time.time()
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output (skip_special_tokens=False)', '-'*20)
print(output_str)

View file

@ -0,0 +1,68 @@
# Llama3
In this directory, you will find examples on how you could use IPEX-LLM `optimize_model` API to accelerate Llama3 models. For illustration purposes, we utilize the [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) as a reference Llama3 model.
## Requirements
To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a Llama3 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations.
### 1. Install
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
After installing conda, create a Python environment for IPEX-LLM:
```bash
conda create -n llm python=3.11 # recommend to use Python 3.11
conda activate llm
pip install --pre --upgrade ipex-llm[all] # install the latest ipex-llm nightly build with 'all' option
# transformers>=4.33.0 is required for Llama3 with IPEX-LLM optimizations
pip install transformers==4.37.0
```
### 2. Run
After setting up the Python environment, you could run the example by following steps.
#### 2.1 Client
On client Windows machines, it is recommended to run directly with full utilization of all cores:
```powershell
python ./generate.py --prompt 'What is AI?'
```
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
#### 2.2 Server
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
E.g. on Linux,
```bash
# set IPEX-LLM env variables
source ipex-llm-init
# e.g. for a server with 48 cores per socket
export OMP_NUM_THREADS=48
numactl -C 0-47 -m 0 python ./generate.py --prompt 'What is AI?'
```
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
#### 2.3 Arguments Info
In the example, several arguments can be passed to satisfy your requirements:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama3 model (e.g. `meta-llama/Meta-Llama-3-8B-Instruct`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Meta-Llama-3-8B-Instruct'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
#### 2.3 Sample Output
#### [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
<|begin_of_text|><|start_header_id|>user<|end_header_id|>
What is AI?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
-------------------- Output (skip_special_tokens=False) --------------------
<|begin_of_text|><|start_header_id|>user<|end_header_id|>
What is AI?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
A question that gets to the heart of the 21st century!
Artificial Intelligence (AI) refers to the development of computer systems that can perform tasks that
```

View file

@ -0,0 +1,82 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
from transformers import AutoModelForCausalLM, AutoTokenizer
from ipex_llm import optimize_model
# you could tune the prompt based on your own model,
# here the prompt tuning refers to https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-3
DEFAULT_SYSTEM_PROMPT = """\
"""
def get_prompt(user_input: str, chat_history: list[tuple[str, str]],
system_prompt: str) -> str:
prompt_texts = [f'<|begin_of_text|>']
if system_prompt != '':
prompt_texts.append(f'<|start_header_id|>system<|end_header_id|>\n{system_prompt}<|eot_id|>')
for history_input, history_response in chat_history:
prompt_texts.append(f'<|start_header_id|>user<|end_header_id|>\n{history_input.strip()}<|eot_id|>')
prompt_texts.append(f'<|start_header_id|>assistant<|end_header_id|>\n{history_response.strip()}<|eot_id|>')
prompt_texts.append(f'<|start_header_id|>user<|end_header_id|>\n{user_input.strip()}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n')
return ''.join(prompt_texts)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama3 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Meta-Llama-3-8B-Instruct",
help='The huggingface repo id for the Llama3 (e.g. `meta-llama/Meta-Llama-3-8B-Instruct`) to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
# Load model
model = AutoModelForCausalLM.from_pretrained(model_path,
trust_remote_code=True,
torch_dtype='auto',
low_cpu_mem_usage=True,
use_cache=True)
# With only one line to enable IPEX-LLM optimization on model
model = optimize_model(model)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
# Generate predicted tokens
with torch.inference_mode():
prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
input_ids = tokenizer.encode(prompt, return_tensors="pt")
st = time.time()
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
end = time.time()
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output (skip_special_tokens=False)', '-'*20)
print(output_str)

View file

@ -0,0 +1,136 @@
# Llama3
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Llama3 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) as a reference Llama3 models.
## 0. Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a Llama3 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
### 1. Install
#### 1.1 Installation on Linux
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
# transformers>=4.33.0 is required for Llama3 with IPEX-LLM optimizations
pip install transformers==4.37.0
```
#### 1.2 Installation on Windows
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11 libuv
conda activate llm
# below command will use pip to install the Intel oneAPI Base Toolkit 2024.0
pip install dpcpp-cpp-rt==2024.0.2 mkl-dpcpp==2024.0.0 onednn==2024.0.0
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
# transformers>=4.33.0 is required for Llama3 with IPEX-LLM optimizations
pip install transformers==4.37.0
```
### 2. Configures OneAPI environment variables for Linux
> [!NOTE]
> Skip this step if you are running on Windows.
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
```bash
source /opt/intel/oneapi/setvars.sh
```
### 3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 3.1 Configurations for Linux
<details>
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
```
</details>
<details>
<summary>For Intel Data Center GPU Max Series</summary>
```bash
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1
```
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
</details>
<details>
<summary>For Intel iGPU</summary>
```bash
export SYCL_CACHE_PERSISTENT=1
export BIGDL_LLM_XMX_DISABLED=1
```
</details>
#### 3.2 Configurations for Windows
<details>
<summary>For Intel iGPU</summary>
```cmd
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
```
</details>
<details>
<summary>For Intel Arc™ A-Series Graphics</summary>
```cmd
set SYCL_CACHE_PERSISTENT=1
```
</details>
> [!NOTE]
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples
```
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama3 model (e.g. `meta-llama/Meta-Llama-3-8B-Instruct`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Meta-Llama-3-8B-Instruct'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
#### Sample Output
#### [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
<|begin_of_text|><|start_header_id|>user<|end_header_id|>
What is AI?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
-------------------- Output (skip_special_tokens=False) --------------------
<|begin_of_text|><|start_header_id|>user<|end_header_id|>
What is AI?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
A question that gets to the heart of the 21st century!
Artificial Intelligence (AI) refers to the development of computer systems that can perform tasks that
```

View file

@ -0,0 +1,90 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
from ipex_llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
# you could tune the prompt based on your own model,
# here the prompt tuning refers to https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-3
DEFAULT_SYSTEM_PROMPT = """\
"""
def get_prompt(user_input: str, chat_history: list[tuple[str, str]],
system_prompt: str) -> str:
prompt_texts = [f'<|begin_of_text|>']
if system_prompt != '':
prompt_texts.append(f'<|start_header_id|>system<|end_header_id|>\n{system_prompt}<|eot_id|>')
for history_input, history_response in chat_history:
prompt_texts.append(f'<|start_header_id|>user<|end_header_id|>\n{history_input.strip()}<|eot_id|>')
prompt_texts.append(f'<|start_header_id|>assistant<|end_header_id|>\n{history_response.strip()}<|eot_id|>')
prompt_texts.append(f'<|start_header_id|>user<|end_header_id|>\n{user_input.strip()}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n')
return ''.join(prompt_texts)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama3 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Meta-Llama-3-8B-Instruct",
help='The huggingface repo id for the Llama3 (e.g. `meta-llama/Meta-Llama-3-8B-Instruct`) to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=True,
trust_remote_code=True,
use_cache=True)
model = model.half().to('xpu')
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
# Generate predicted tokens
with torch.inference_mode():
prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
# ipex_llm model needs a warmup, then inference time can be accurate
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
# start inference
st = time.time()
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
torch.xpu.synchronize()
end = time.time()
output = output.cpu()
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output (skip_special_tokens=False)', '-'*20)
print(output_str)

View file

@ -0,0 +1,137 @@
# Llama3
In this directory, you will find examples on how you could use IPEX-LLM `optimize_model` API to accelerate Llama3 models. For illustration purposes, we utilize the [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) as a reference Llama3 models.
## Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a Llama3 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
### 1. Install
#### 1.1 Installation on Linux
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
# transformers>=4.33.0 is required for Llama3 with IPEX-LLM optimizations
pip install transformers==4.37.0
```
#### 1.2 Installation on Windows
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11 libuv
conda activate llm
# below command will use pip to install the Intel oneAPI Base Toolkit 2024.0
pip install dpcpp-cpp-rt==2024.0.2 mkl-dpcpp==2024.0.0 onednn==2024.0.0
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
# transformers>=4.33.0 is required for Llama3 with IPEX-LLM optimizations
pip install transformers==4.37.0
```
### 2. Configures OneAPI environment variables for Linux
> [!NOTE]
> Skip this step if you are running on Windows.
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
```bash
source /opt/intel/oneapi/setvars.sh
```
### 3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 3.1 Configurations for Linux
<details>
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
```
</details>
<details>
<summary>For Intel Data Center GPU Max Series</summary>
```bash
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1
```
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
</details>
<details>
<summary>For Intel iGPU</summary>
```bash
export SYCL_CACHE_PERSISTENT=1
export BIGDL_LLM_XMX_DISABLED=1
```
</details>
#### 3.2 Configurations for Windows
<details>
<summary>For Intel iGPU</summary>
```cmd
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
```
</details>
<details>
<summary>For Intel Arc™ A-Series Graphics</summary>
```cmd
set SYCL_CACHE_PERSISTENT=1
```
</details>
> [!NOTE]
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples
```bash
python ./generate.py --prompt 'What is AI?'
```
In the example, several arguments can be passed to satisfy your requirements:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama3 model (e.g. `meta-llama/Meta-Llama-3-8B-Instruct`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Meta-Llama-3-8B-Instruct'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
#### Sample Output
#### [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
<|begin_of_text|><|start_header_id|>user<|end_header_id|>
What is AI?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
-------------------- Output (skip_special_tokens=False) --------------------
<|begin_of_text|><|start_header_id|>user<|end_header_id|>
What is AI?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
A question that gets to the heart of the 21st century!
Artificial Intelligence (AI) refers to the development of computer systems that can perform tasks that
```

View file

@ -0,0 +1,93 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
from transformers import AutoModelForCausalLM, AutoTokenizer
from ipex_llm import optimize_model
# you could tune the prompt based on your own model,
# here the prompt tuning refers to https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-3
DEFAULT_SYSTEM_PROMPT = """\
"""
def get_prompt(user_input: str, chat_history: list[tuple[str, str]],
system_prompt: str) -> str:
prompt_texts = [f'<|begin_of_text|>']
if system_prompt != '':
prompt_texts.append(f'<|start_header_id|>system<|end_header_id|>\n{system_prompt}<|eot_id|>')
for history_input, history_response in chat_history:
prompt_texts.append(f'<|start_header_id|>user<|end_header_id|>\n{history_input.strip()}<|eot_id|>')
prompt_texts.append(f'<|start_header_id|>assistant<|end_header_id|>\n{history_response.strip()}<|eot_id|>')
prompt_texts.append(f'<|start_header_id|>user<|end_header_id|>\n{user_input.strip()}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n')
return ''.join(prompt_texts)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama3 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Meta-Llama-3-8B-Instruct",
help='The huggingface repo id for the Llama3 (e.g. `meta-llama/Meta-Llama-3-8B-Instruct`) to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
# Load model
model = AutoModelForCausalLM.from_pretrained(model_path,
trust_remote_code=True,
torch_dtype='auto',
low_cpu_mem_usage=True,
use_cache=True)
# With only one line to enable IPEX-LLM optimization on model
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the optimize_model function.
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
model = optimize_model(model)
model = model.half().to('xpu')
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
# Generate predicted tokens
with torch.inference_mode():
prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
# ipex_llm model needs a warmup, then inference time can be accurate
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
# start inference
st = time.time()
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
torch.xpu.synchronize()
end = time.time()
output = output.cpu()
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output (skip_special_tokens=False)', '-'*20)
print(output_str)