62 lines
2.9 KiB
Markdown
62 lines
2.9 KiB
Markdown
# InternLM
|
||
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on InternLM models on [Intel GPUs](../README.md). For illustration purposes, we utilize the [internlm/internlm-chat-7b-8k](https://huggingface.co/internlm/internlm-chat-7b-8k) as a reference InternLM model.
|
||
|
||
## 0. Requirements
|
||
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||
|
||
## Example: Predict Tokens using `generate()` API
|
||
In the example [generate.py](./generate.py), we show a basic use case for a InternLM model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
|
||
### 1. Install
|
||
We suggest using conda to manage environment:
|
||
```bash
|
||
conda create -n llm python=3.9
|
||
conda activate llm
|
||
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
|
||
# you can install specific ipex/torch version for your need
|
||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
|
||
```
|
||
|
||
### 2. Configures OneAPI environment variables
|
||
```bash
|
||
source /opt/intel/oneapi/setvars.sh
|
||
```
|
||
|
||
### 3. Run
|
||
|
||
For optimal performance on Arc, it is recommended to set several environment variables.
|
||
|
||
```bash
|
||
export USE_XETLA=OFF
|
||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||
```
|
||
|
||
```
|
||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
|
||
```
|
||
|
||
Arguments info:
|
||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the InternLM model (e.g. `internlm/internlm-chat-7b-8k`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'internlm/internlm-chat-7b-8k'`.
|
||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
|
||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||
|
||
#### Sample Output
|
||
#### [internlm/internlm-chat-7b-8k](https://huggingface.co/internlm/internlm-chat-7b-8k)
|
||
```log
|
||
Inference time: xxxx s
|
||
-------------------- Prompt --------------------
|
||
<|User|>:AI是什么?
|
||
<|Bot|>:
|
||
-------------------- Output --------------------
|
||
<|User|>:AI是什么?
|
||
<|Bot|>:AI是人工智能的缩写,是计算机科学的一个分支,旨在使计算机能够像人类一样思考、学习和执行任务。AI技术包括机器学习、自然
|
||
```
|
||
|
||
```log
|
||
Inference time: xxxx s
|
||
-------------------- Prompt --------------------
|
||
<|User|>:What is AI?
|
||
<|Bot|>:
|
||
-------------------- Output --------------------
|
||
<|User|>:What is AI?
|
||
<|Bot|>:AI is the ability of machines to perform tasks that would normally require human intelligence, such as perception, reasoning, learning, and decision-making. AI is made possible
|
||
```
|