149 lines
		
	
	
	
		
			4.6 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			149 lines
		
	
	
	
		
			4.6 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
## C-Eval Benchmark Test Guide
 | 
						|
 | 
						|
This guide provides instructions for running the C-Eval benchmark test in both single-GPU and multi-GPU environments. [C-Eval](https://cevalbenchmark.com) is a comprehensive multi-level, multi-discipline Chinese evaluation suite for foundational models. It consists of 13,948 multiple-choice questions spanning 52 diverse disciplines and four difficulty levels. For more details, see the [C-Eval paper](https://arxiv.org/abs/2305.08322) and [GitHub repository](https://github.com/hkust-nlp/ceval).
 | 
						|
 | 
						|
---
 | 
						|
 | 
						|
### Single-GPU Environment
 | 
						|
 | 
						|
#### 1. Download Dataset
 | 
						|
 | 
						|
Download and unzip the dataset for evaluation:
 | 
						|
```bash
 | 
						|
wget https://huggingface.co/datasets/ceval/ceval-exam/resolve/main/ceval-exam.zip
 | 
						|
mkdir data
 | 
						|
mv ceval-exam.zip data
 | 
						|
cd data; unzip ceval-exam.zip
 | 
						|
```
 | 
						|
 | 
						|
#### 2. Run Evaluation
 | 
						|
 | 
						|
Use the following command to run the evaluation:
 | 
						|
```bash
 | 
						|
bash run.sh
 | 
						|
```
 | 
						|
 | 
						|
Contents of `run.sh`:
 | 
						|
```bash
 | 
						|
export IPEX_LLM_LAST_LM_HEAD=0
 | 
						|
python eval.py \
 | 
						|
    --model_path "path to model" \
 | 
						|
    --eval_type validation \
 | 
						|
    --device xpu \
 | 
						|
    --eval_data_path data \
 | 
						|
    --qtype sym_int4
 | 
						|
```
 | 
						|
 | 
						|
> **Note**
 | 
						|
>
 | 
						|
> - `eval_type`: There are two types of evaluations:
 | 
						|
>   - `validation`: Runs on the validation dataset and outputs evaluation scores.
 | 
						|
>   - `test`: Runs on the test dataset and outputs a `submission.json` file for submission on [C-Eval](https://cevalbenchmark.com) to get evaluation scores.
 | 
						|
 | 
						|
---
 | 
						|
 | 
						|
### Multi-GPU Environment
 | 
						|
 | 
						|
#### 1. Prepare Environment
 | 
						|
 | 
						|
1. **Set Docker Image and Container Name**:
 | 
						|
   ```bash
 | 
						|
   export DOCKER_IMAGE=intelanalytics/ipex-llm-serving-xpu:latest
 | 
						|
   export CONTAINER_NAME=ceval-benchmark
 | 
						|
   ```
 | 
						|
 | 
						|
2. **Start Docker Container**:
 | 
						|
   ```bash
 | 
						|
   docker run -td \
 | 
						|
         --net=host \
 | 
						|
         --privileged \
 | 
						|
         --device=/dev/dri \
 | 
						|
         --name=$CONTAINER_NAME \
 | 
						|
         -v /home/intel/LLM:/llm/models/ \
 | 
						|
         -e no_proxy=localhost,127.0.0.1 \
 | 
						|
         -e http_proxy=$HTTP_PROXY \
 | 
						|
         -e https_proxy=$HTTPS_PROXY \
 | 
						|
         --shm-size="16g" \
 | 
						|
         --entrypoint /bin/bash \
 | 
						|
         $DOCKER_IMAGE
 | 
						|
   ```
 | 
						|
 | 
						|
3. **Enter the Container**:
 | 
						|
   ```bash
 | 
						|
   docker exec -it $CONTAINER_NAME bash
 | 
						|
   ```
 | 
						|
 | 
						|
#### 2. Configure `lm-evaluation-harness`
 | 
						|
 | 
						|
1. **Clone the Repository**:
 | 
						|
   ```bash
 | 
						|
   git clone https://github.com/EleutherAI/lm-evaluation-harness
 | 
						|
   cd lm-evaluation-harness
 | 
						|
   ```
 | 
						|
 | 
						|
2. **Update Multi-GPU Support File**:
 | 
						|
   Update `lm_eval/models/vllm_causallms.py` based on the following link:
 | 
						|
   [Update Multi-GPU Support File](https://github.com/EleutherAI/lm-evaluation-harness/compare/main...liu-shaojun:lm-evaluation-harness:multi-arc?expand=1)
 | 
						|
 | 
						|
3. **Install Dependencies**:
 | 
						|
   ```bash
 | 
						|
   pip install -e .
 | 
						|
   ```
 | 
						|
 | 
						|
#### 3. Configure Environment Variables
 | 
						|
 | 
						|
Set environment variables required for multi-GPU execution:
 | 
						|
```bash
 | 
						|
export CCL_WORKER_COUNT=2
 | 
						|
export CCL_ATL_TRANSPORT=ofi
 | 
						|
export CCL_ZE_IPC_EXCHANGE=sockets
 | 
						|
export CCL_ATL_SHM=1
 | 
						|
export CCL_SAME_STREAM=1
 | 
						|
export CCL_BLOCKING_WAIT=0
 | 
						|
 | 
						|
export SYCL_CACHE_PERSISTENT=1
 | 
						|
export FI_PROVIDER=shm
 | 
						|
export USE_XETLA=OFF
 | 
						|
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=2
 | 
						|
export TORCH_LLM_ALLREDUCE=0
 | 
						|
```
 | 
						|
 | 
						|
Load Intel OneCCL environment variables:
 | 
						|
```bash
 | 
						|
source /opt/intel/1ccl-wks/setvars.sh
 | 
						|
```
 | 
						|
 | 
						|
#### 4. Run Evaluation
 | 
						|
 | 
						|
Use the following command to run the C-Eval benchmark:
 | 
						|
```bash
 | 
						|
lm_eval --model vllm \
 | 
						|
  --model_args pretrained=/llm/models/CodeLlama-34b/,dtype=float16,max_model_len=2048,device=xpu,load_in_low_bit=fp8,tensor_parallel_size=4,distributed_executor_backend="ray",gpu_memory_utilization=0.90,trust_remote_code=True \
 | 
						|
  --tasks ceval-valid \
 | 
						|
  --batch_size 2 \
 | 
						|
  --num_fewshot 0 \
 | 
						|
  --output_path c-eval-result
 | 
						|
```
 | 
						|
 | 
						|
#### 5. Notes
 | 
						|
 | 
						|
- **Model and Parameter Adjustments**:
 | 
						|
  - **`pretrained`**: Replace with the desired model path, e.g., `/llm/models/CodeLlama-7b/`.
 | 
						|
  - **`load_in_low_bit`**: Set to `fp8` or other precision options based on hardware and task requirements.
 | 
						|
  - **`tensor_parallel_size`**: Adjust based on the number of GPUs and memory. Recommended to match the GPU count.
 | 
						|
  - **`batch_size`**: Increase to accelerate testing, but ensure it does not cause OOM errors. Recommended values are `2` or `3`.
 | 
						|
  - **`num_fewshot`**: Specify the number of few-shot examples. Default is `0`. Increasing this value can improve model contextual understanding but may significantly increase input length and runtime.
 | 
						|
 | 
						|
- **Logging**:
 | 
						|
  To log both to the console and a file, use:
 | 
						|
  ```bash
 | 
						|
  lm_eval --model vllm ... | tee c-eval.log
 | 
						|
  ```
 | 
						|
 | 
						|
- **Container Debugging**:
 | 
						|
  Ensure the paths for the model and tasks are correctly set, e.g., check if `/llm/models/` is properly mounted in the container.
 | 
						|
 | 
						|
---
 | 
						|
 | 
						|
By following the above steps, you can successfully run the C-Eval benchmark in both single-GPU and multi-GPU environments.
 | 
						|
 |