ipex-llm/docs/mddocs/Overview/KeyFeatures/langchain_api.md
Yuwen Hu a027121530
Small mddoc fixed based on review (#11391)
* Fix based on review

* Further fix

* Small fix

* Small fix
2024-06-21 17:09:30 +08:00

1.8 KiB

LangChain API

You may run the models using the LangChain API in ipex-llm.

Using Hugging Face transformers INT4 Format

You may run any Hugging Face Transformers model (with INT4 optimiztions applied) using the LangChain API as follows:

from ipex_llm.langchain.llms import TransformersLLM
from ipex_llm.langchain.embeddings import TransformersEmbeddings
from langchain.chains.question_answering import load_qa_chain

embeddings = TransformersEmbeddings.from_model_id(model_id=model_path)
ipex_llm = TransformersLLM.from_model_id(model_id=model_path, ...)

doc_chain = load_qa_chain(ipex_llm, ...)
output = doc_chain.run(...)

Tip

See the examples here

Using Native INT4 Format

You may also convert Hugging Face Transformers models into native INT4 format, and then run the converted models using the LangChain API as follows.

Note

  • Currently only llama/bloom/gptneox/starcoder model families are supported; for other models, you may use the Hugging Face transformers INT4 format as described above.
  • You may choose the corresponding API developed for specific native models to load the converted model.
from ipex_llm.langchain.llms import LlamaLLM
from ipex_llm.langchain.embeddings import LlamaEmbeddings
from langchain.chains.question_answering import load_qa_chain

# switch to GptneoxEmbeddings/BloomEmbeddings/StarcoderEmbeddings to load other models
embeddings = LlamaEmbeddings(model_path='/path/to/converted/model.bin')
# switch to GptneoxLLM/BloomLLM/StarcoderLLM to load other models
ipex_llm = LlamaLLM(model_path='/path/to/converted/model.bin')

doc_chain = load_qa_chain(ipex_llm, ...)
doc_chain.run(...)