ipex-llm/python/llm/example/gpu/chinese-llama2/README.md
Ruonan Wang 4de73f592e LLM: add gpu example of chinese-llama-2-7b (#8960)
* add gpu example of chinese -llama2

* update model name and link

* update name
2023-09-13 10:16:51 +08:00

57 lines
2.4 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Chinese Llama2
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Chinese LLaMA models on [Intel GPUs](../README.md). For illustration purposes, we utilize the [LinkSoul/Chinese-Llama-2-7b](https://huggingface.co/LinkSoul/Chinese-Llama-2-7b) as reference Chinese LLaMA models.
## 0. Requirements
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a Llama2 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
### 1. Install
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.9
conda activate llm
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
# you can install specific ipex/torch version for your need
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
```
### 2. Configures OneAPI environment variables
```bash
source /opt/intel/oneapi/setvars.sh
```
### 3. Run
For optimal performance on Arc, it is recommended to set several environment variables.
```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
```
```
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Chinese Llama2 model (e.g. `LinkSoul/Chinese-Llama-2-7b`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'LinkSoul/Chinese-Llama-2-7b'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
#### Sample Output
#### [LinkSoul/Chinese-Llama-2-7b](https://huggingface.co/LinkSoul/Chinese-Llama-2-7b)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
<s>[INST] <<SYS>>
<</SYS>>
AI是什么 [/INST]
-------------------- Output --------------------
[INST] <<SYS>>
<</SYS>>
AI是什么 [/INST] AI人工智能是一种计算机科学旨在开发能够模拟人
```