41 lines
		
	
	
	
		
			3 KiB
		
	
	
	
		
			YAML
		
	
	
	
	
	
			
		
		
	
	
			41 lines
		
	
	
	
		
			3 KiB
		
	
	
	
		
			YAML
		
	
	
	
	
	
repo_id:
 | 
						|
  # - 'THUDM/chatglm2-6b'
 | 
						|
  - 'meta-llama/Llama-2-7b-chat-hf'
 | 
						|
  # - 'liuhaotian/llava-v1.5-7b' # requires a LLAVA_REPO_DIR env variables pointing to the llava dir; added only for gpu win related test_api now
 | 
						|
local_model_hub: 'path to your local model hub'
 | 
						|
warm_up: 1 # must set >=2 when run "pipeline_parallel_gpu" test_api
 | 
						|
num_trials: 3
 | 
						|
num_beams: 1 # default to greedy search
 | 
						|
low_bit: 'sym_int4' # default to use 'sym_int4' (i.e. symmetric int4)
 | 
						|
batch_size: 1 # default to 1
 | 
						|
in_out_pairs:
 | 
						|
  - '32-32'
 | 
						|
  - '1024-128'
 | 
						|
test_api:
 | 
						|
  - "transformer_int4_fp16_gpu"             # on Intel GPU, transformer-like API, (qtype=int4), (dtype=fp16)
 | 
						|
  # - "transformer_int4_fp16_gpu_win"       # on Intel GPU for Windows, transformer-like API, (qtype=int4), (dtype=fp16)
 | 
						|
  # - "transformer_int4_gpu"                # on Intel GPU, transformer-like API, (qtype=int4), (dtype=fp32)
 | 
						|
  # - "transformer_int4_gpu_win"            # on Intel GPU for Windows, transformer-like API, (qtype=int4), (dtype=fp32)
 | 
						|
  # - "transformer_int4_loadlowbit_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), use load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
 | 
						|
  # - "bigdl_fp16_gpu"                      # on Intel GPU, use ipex-llm transformers API, (dtype=fp16), (qtype=fp16)
 | 
						|
  # - "optimize_model_gpu"                  # on Intel GPU, can optimize any pytorch models include transformer model
 | 
						|
  # - "deepspeed_optimize_model_gpu"        # on Intel GPU, deepspeed autotp inference
 | 
						|
  # - "pipeline_parallel_gpu"               # on Intel GPU, pipeline parallel inference
 | 
						|
  # - "speculative_gpu"                     # on Intel GPU, inference with self-speculative decoding
 | 
						|
  # - "transformer_int4"                    # on Intel CPU, transformer-like API, (qtype=int4)
 | 
						|
  # - "native_int4"                         # on Intel CPU
 | 
						|
  # - "optimize_model"                      # on Intel CPU, can optimize any pytorch models include transformer model
 | 
						|
  # - "pytorch_autocast_bf16"               # on Intel CPU
 | 
						|
  # - "transformer_autocast_bf16"           # on Intel CPU
 | 
						|
  # - "bigdl_ipex_bf16"                     # on Intel CPU, (qtype=bf16)
 | 
						|
  # - "bigdl_ipex_int4"                     # on Intel CPU, (qtype=int4)
 | 
						|
  # - "bigdl_ipex_int8"                     # on Intel CPU, (qtype=int8)
 | 
						|
  # - "speculative_cpu"                     # on Intel CPU, inference with self-speculative decoding
 | 
						|
  # - "deepspeed_transformer_int4_cpu"      # on Intel CPU, deepspeed autotp inference
 | 
						|
  # - "transformer_int4_fp16_lookahead_gpu" # on Intel GPU, transformer-like API, with lookahead, (qtype=int4), (dtype=fp16)
 | 
						|
cpu_embedding: False # whether put embedding to CPU
 | 
						|
streaming: False # whether output in streaming way (only available now for gpu win related test_api)
 | 
						|
use_fp16_torch_dtype: True # whether use fp16 for non-linear layer (only available now for "pipeline_parallel_gpu" test_api)
 | 
						|
lookahead: 3
 | 
						|
max_matching_ngram_size: 2
 | 
						|
task: 'continuation' # when test_api is "transformer_int4_fp16_lookahead_gpu", task could be 'QA', 'continuation' or 'summarize' 
 |