Update PP inference benchmark script (#11323)
This commit is contained in:
parent
be00380f1a
commit
6ea1e71af0
5 changed files with 63 additions and 82 deletions
|
|
@ -27,7 +27,7 @@ repo_id:
|
|||
- 'meta-llama/Llama-2-7b-chat-hf'
|
||||
# - 'liuhaotian/llava-v1.5-7b' # requires a LLAVA_REPO_DIR env variables pointing to the llava dir; added only for gpu win related test_api now
|
||||
local_model_hub: 'path to your local model hub'
|
||||
warm_up: 1
|
||||
warm_up: 1 # must set >=2 when run "pipeline_parallel_gpu" test_api
|
||||
num_trials: 3
|
||||
num_beams: 1 # default to greedy search
|
||||
low_bit: 'sym_int4' # default to use 'sym_int4' (i.e. symmetric int4)
|
||||
|
|
@ -36,29 +36,33 @@ in_out_pairs:
|
|||
- '32-32'
|
||||
- '1024-128'
|
||||
test_api:
|
||||
- "transformer_int4_gpu" # on Intel GPU
|
||||
# - "transformer_int4_fp16_gpu" # on Intel GPU, use fp16 for non-linear layer
|
||||
# - "ipex_fp16_gpu" # on Intel GPU
|
||||
# - "bigdl_fp16_gpu" # on Intel GPU
|
||||
# - "optimize_model_gpu" # on Intel GPU
|
||||
# - "transformer_int4_gpu_win" # on Intel GPU for Windows
|
||||
# - "transformer_int4_fp16_gpu_win" # on Intel GPU for Windows, use fp16 for non-linear layer
|
||||
# - "transformer_int4_loadlowbit_gpu_win" # on Intel GPU for Windows using load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
|
||||
# - "deepspeed_optimize_model_gpu" # deepspeed autotp on Intel GPU
|
||||
# - "speculative_gpu"
|
||||
# - "transformer_int4"
|
||||
# - "native_int4"
|
||||
# - "optimize_model"
|
||||
# - "pytorch_autocast_bf16"
|
||||
# - "transformer_autocast_bf16"
|
||||
# - "bigdl_ipex_bf16"
|
||||
# - "bigdl_ipex_int4"
|
||||
# - "bigdl_ipex_int8"
|
||||
# - "speculative_cpu"
|
||||
# - "deepspeed_transformer_int4_cpu" # on Intel SPR Server
|
||||
- "transformer_int4_fp16_gpu" # on Intel GPU, transformer-like API, (qtype=int4), (dtype=fp16)
|
||||
# - "transformer_int4_fp16_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), (dtype=fp16)
|
||||
# - "transformer_int4_gpu" # on Intel GPU, transformer-like API, (qtype=int4), (dtype=fp32)
|
||||
# - "transformer_int4_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), (dtype=fp32)
|
||||
# - "transformer_int4_loadlowbit_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), use load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
|
||||
# - "bigdl_fp16_gpu" # on Intel GPU, use ipex-llm transformers API, (dtype=fp16), (qtype=fp16)
|
||||
# - "optimize_model_gpu" # on Intel GPU, can optimize any pytorch models include transformer model
|
||||
# - "deepspeed_optimize_model_gpu" # on Intel GPU, deepspeed autotp inference
|
||||
# - "pipeline_parallel_gpu" # on Intel GPU, pipeline parallel inference
|
||||
# - "speculative_gpu" # on Intel GPU, inference with self-speculative decoding
|
||||
# - "transformer_int4" # on Intel CPU, transformer-like API, (qtype=int4)
|
||||
# - "native_int4" # on Intel CPU
|
||||
# - "optimize_model" # on Intel CPU, can optimize any pytorch models include transformer model
|
||||
# - "pytorch_autocast_bf16" # on Intel CPU
|
||||
# - "transformer_autocast_bf16" # on Intel CPU
|
||||
# - "bigdl_ipex_bf16" # on Intel CPU, (qtype=bf16)
|
||||
# - "bigdl_ipex_int4" # on Intel CPU, (qtype=int4)
|
||||
# - "bigdl_ipex_int8" # on Intel CPU, (qtype=int8)
|
||||
# - "speculative_cpu" # on Intel CPU, inference with self-speculative decoding
|
||||
# - "deepspeed_transformer_int4_cpu" # on Intel CPU, deepspeed autotp inference
|
||||
# - "transformer_int4_fp16_lookahead_gpu" # on Intel GPU, transformer-like API, with lookahead, (qtype=int4), (dtype=fp16)
|
||||
cpu_embedding: False # whether put embedding to CPU
|
||||
streaming: False # whether output in streaming way (only avaiable now for gpu win related test_api)
|
||||
|
||||
streaming: False # whether output in streaming way (only available now for gpu win related test_api)
|
||||
use_fp16_torch_dtype: True # whether use fp16 for non-linear layer (only available now for "pipeline_parallel_gpu" test_api)
|
||||
lookahead: 3
|
||||
max_matching_ngram_size: 2
|
||||
task: 'continuation' # when test_api is "transformer_int4_fp16_lookahead_gpu", task could be 'QA', 'continuation' or 'summarize'
|
||||
|
||||
```
|
||||
|
||||
|
|
|
|||
|
|
@ -36,7 +36,6 @@ test_api:
|
|||
cpu_embedding: False # whether put embedding to CPU
|
||||
streaming: False # whether output in streaming way (only available now for gpu win related test_api)
|
||||
use_fp16_torch_dtype: True # whether use fp16 for non-linear layer (only available now for "pipeline_parallel_gpu" test_api)
|
||||
n_gpu: 2 # number of GPUs to use (only available now for "pipeline_parallel_gpu" test_api)
|
||||
lookahead: 3
|
||||
max_matching_ngram_size: 2
|
||||
task: 'continuation' # when test_api is "transformer_int4_fp16_lookahead_gpu", task could be 'QA', 'continuation' or 'summarize'
|
||||
|
|
|
|||
|
|
@ -0,0 +1,13 @@
|
|||
source /opt/intel/oneapi/setvars.sh
|
||||
export MASTER_ADDR=127.0.0.1
|
||||
export MASTER_PORT=8080
|
||||
export FI_PROVIDER=tcp
|
||||
export USE_XETLA=OFF
|
||||
export OMP_NUM_THREADS=6
|
||||
if [[ $KERNEL_VERSION != *"6.5"* ]]; then
|
||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||
fi
|
||||
export TORCH_LLM_ALLREDUCE=0
|
||||
|
||||
NUM_GPUS=2 # number of used GPU
|
||||
CCL_ZE_IPC_EXCHANGE=sockets torchrun --standalone --nnodes=1 --nproc-per-node $NUM_GPUS run.py
|
||||
|
|
@ -106,7 +106,7 @@ def preprocess_prompt(tokenizer, in_len, task):
|
|||
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
||||
return input_ids
|
||||
|
||||
def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1, low_bit='sym_int4', cpu_embedding=False, batch_size=1, streaming=False, use_fp16_torch_dtype=False, n_gpu=2):
|
||||
def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1, low_bit='sym_int4', cpu_embedding=False, batch_size=1, streaming=False, use_fp16_torch_dtype=False):
|
||||
# TODO: make a parameter
|
||||
result= {}
|
||||
if test_api == 'transformer_int4':
|
||||
|
|
@ -152,7 +152,7 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
|
|||
elif test_api == 'speculative_gpu':
|
||||
result = run_speculative_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
|
||||
elif test_api == 'pipeline_parallel_gpu':
|
||||
result = run_pipeline_parallel_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, cpu_embedding, fp16=use_fp16_torch_dtype, n_gpu=n_gpu)
|
||||
result = run_pipeline_parallel_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, cpu_embedding, fp16=use_fp16_torch_dtype)
|
||||
elif test_api == "transformer_int4_fp16_lookahead_gpu":
|
||||
result = run_transformer_int4_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, cpu_embedding, fp16=True, lookahead=True)
|
||||
else:
|
||||
|
|
@ -1747,41 +1747,30 @@ def run_pipeline_parallel_gpu(repo_id,
|
|||
low_bit,
|
||||
batch_size,
|
||||
cpu_embedding,
|
||||
fp16=False,
|
||||
n_gpu=2):
|
||||
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
||||
fp16=False):
|
||||
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM, init_pipeline_parallel
|
||||
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
|
||||
init_pipeline_parallel()
|
||||
model_path = get_model_path(repo_id, local_model_hub)
|
||||
pipeline_parallel_stages = torch.distributed.get_world_size()
|
||||
# Load model in 4 bit,
|
||||
# which convert the relevant layers in the model into INT4 format
|
||||
st = time.perf_counter()
|
||||
origin_repo_id = repo_id.replace("-4bit", "")
|
||||
if origin_repo_id in CHATGLM_IDS:
|
||||
if "4bit" in repo_id:
|
||||
model = AutoModel.load_low_bit(model_path, optimize_model=True,
|
||||
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
|
||||
else:
|
||||
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
|
||||
trust_remote_code=True, use_cache=True).eval()
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, cpu_embedding=cpu_embedding)
|
||||
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
|
||||
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding,
|
||||
pipeline_parallel_stages=pipeline_parallel_stages).eval()
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
elif origin_repo_id in LLAMA_IDS:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
|
||||
use_cache=True, cpu_embedding=cpu_embedding).eval()
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
|
||||
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding,
|
||||
pipeline_parallel_stages=pipeline_parallel_stages).eval()
|
||||
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
else:
|
||||
if "4bit" in repo_id:
|
||||
model = AutoModelForCausalLM.load_low_bit(model_path, optimize_model=True,
|
||||
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
|
||||
else:
|
||||
if 'starcoder' in repo_id:
|
||||
# Load starcoder-15.5b model in bf16 format to avoid CPU OOM.
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
|
||||
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding, torch_dtype=torch.bfloat16).eval()
|
||||
# Convert the low-bit model back to fp32 for performance considerations.
|
||||
model = model.float()
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
|
||||
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
|
||||
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding,
|
||||
pipeline_parallel_stages=pipeline_parallel_stages).eval()
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
if fp16:
|
||||
|
|
@ -1792,29 +1781,8 @@ def run_pipeline_parallel_gpu(repo_id,
|
|||
load_time = end - st
|
||||
print(">> loading of model costs {}s and {}GB".format(load_time, torch.xpu.memory.memory_reserved()/(1024**3)))
|
||||
|
||||
model_layers = ['model.embed_tokens']
|
||||
for i in range(model.config.num_hidden_layers):
|
||||
model_layers.append(f'model.layers.{i}')
|
||||
model_layers = model_layers + ['model.norm', 'lm_head']
|
||||
|
||||
device_map = {}
|
||||
split_len = len(model_layers) // n_gpu
|
||||
for i in range(n_gpu):
|
||||
device_map.update({key: f'xpu:{i}' for key in model_layers[split_len * i: split_len * (i + 1)]})
|
||||
if i == n_gpu - 1:
|
||||
device_map.update({key: f'xpu:{i}' for key in model_layers[split_len * (i + 1): ]})
|
||||
print(f">> device map: {device_map}")
|
||||
|
||||
from accelerate import dispatch_model
|
||||
model = dispatch_model(
|
||||
model,
|
||||
device_map=device_map,
|
||||
offload_dir=None,
|
||||
skip_keys=["past_key_value", "past_key_values"],
|
||||
)
|
||||
|
||||
model = BenchmarkWrapper(model)
|
||||
result = {}
|
||||
local_rank = torch.distributed.get_rank()
|
||||
with torch.inference_mode():
|
||||
for in_out in in_out_pairs:
|
||||
in_out_len = in_out.split("-")
|
||||
|
|
@ -1833,7 +1801,7 @@ def run_pipeline_parallel_gpu(repo_id,
|
|||
input_ids = input_ids[:, :in_len]
|
||||
true_str = tokenizer.batch_decode(input_ids)[0]
|
||||
input_list = [true_str] * batch_size
|
||||
input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to('xpu:0')
|
||||
input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to(f'xpu:{local_rank}')
|
||||
actual_in_len = input_ids.shape[1]
|
||||
result[in_out] = []
|
||||
for i in range(num_trials + warm_up):
|
||||
|
|
@ -1849,8 +1817,8 @@ def run_pipeline_parallel_gpu(repo_id,
|
|||
print(output[0])
|
||||
torch.xpu.empty_cache()
|
||||
if i >= warm_up:
|
||||
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
|
||||
actual_in_len, actual_out_len, load_time, model.peak_memory, fp16])
|
||||
result[in_out].append([model.first_token_time, model.rest_cost_mean, 0,
|
||||
actual_in_len, actual_out_len, load_time,])
|
||||
del model
|
||||
torch.xpu.empty_cache()
|
||||
return result
|
||||
|
|
@ -1865,13 +1833,10 @@ if __name__ == '__main__':
|
|||
excludes = conf['exclude']
|
||||
streaming = False
|
||||
use_fp16_torch_dtype = False
|
||||
n_gpu = 2
|
||||
if 'streaming' in conf:
|
||||
streaming = conf['streaming']
|
||||
if 'use_fp16_torch_dtype' in conf:
|
||||
use_fp16_torch_dtype = conf['use_fp16_torch_dtype']
|
||||
if 'n_gpu' in conf:
|
||||
n_gpu = conf['n_gpu']
|
||||
|
||||
import pandas as pd
|
||||
for api in conf.test_api:
|
||||
|
|
@ -1891,7 +1856,7 @@ if __name__ == '__main__':
|
|||
if model_id_input in excludes or model_id_input_batch_size in excludes:
|
||||
in_out_pairs.remove(in_out)
|
||||
run_model(model, api, in_out_pairs, conf['local_model_hub'], conf['warm_up'], conf['num_trials'], conf['num_beams'],
|
||||
conf['low_bit'], conf['cpu_embedding'], batch_size, streaming, use_fp16_torch_dtype, n_gpu)
|
||||
conf['low_bit'], conf['cpu_embedding'], batch_size, streaming, use_fp16_torch_dtype)
|
||||
df = pd.DataFrame(results, columns=['model', '1st token avg latency (ms)', '2+ avg latency (ms/token)', 'encoder time (ms)',
|
||||
'input/output tokens', 'batch_size', 'actual input/output tokens', 'num_beams', 'low_bit', 'cpu_embedding',
|
||||
'model loading time (s)', 'peak mem (GB)', 'streaming', 'use_fp16_torch_dtype'])
|
||||
|
|
|
|||
|
|
@ -172,7 +172,7 @@ def pipeline_parallel_generate(self,
|
|||
past_key_values=_past_key_values, use_cache=True)
|
||||
else:
|
||||
inputs_embeds = torch.empty(_input_ids.shape + (self.config.hidden_size,),
|
||||
device=f'xpu:{local_rank}', dtype=torch.float32)
|
||||
device=f'xpu:{local_rank}', dtype=self.dtype)
|
||||
dist.recv(inputs_embeds, src=pre_rank)
|
||||
outputs = self(input_ids=None, inputs_embeds=inputs_embeds,
|
||||
past_key_values=_past_key_values, use_cache=True)
|
||||
|
|
@ -182,7 +182,7 @@ def pipeline_parallel_generate(self,
|
|||
next_ids = torch.argmax(logits[:, -1:, :], dim=-1)
|
||||
dist.broadcast(next_ids, src=local_rank)
|
||||
else:
|
||||
dist.send(outputs[0], dst=next_rank)
|
||||
dist.send(outputs[0].to(self.dtype), dst=next_rank)
|
||||
next_ids = torch.empty((bs, 1), device=f'xpu:{local_rank}', dtype=torch.int64)
|
||||
dist.broadcast(next_ids, src=self.pipeline_parallel_stages - 1)
|
||||
|
||||
|
|
|
|||
Loading…
Reference in a new issue