* refactor toc * refactor toc * Change to pydata-sphinx-theme and update packages requirement list for ReadtheDocs * Remove customized css for old theme * Add index page to each top bar section and limit dropdown maximum to be 4 * Use js to change 'More' to 'Libraries' * Add custom.css to conf.py for further css changes * Add BigDL logo and search bar * refactor toc * refactor toc and add overview * refactor toc and add overview * refactor toc and add overview * refactor get started * add paper and video section * add videos * add grid columns in landing page * add document roadmap to index * reapply search bar and github icon commit * reorg orca and chronos sections * Test: weaken ads by js * update: change left attrbute * update: add comments * update: change opacity to 0.7 * Remove useless theme template override for old theme * Add sidebar releases component in the home page * Remove sidebar search and restore top nav search button * Add BigDL handouts * Add back to homepage button to pages except from the home page * Update releases contents & styles in left sidebar * Add version badge to the top bar * Test: weaken ads by js * update: add comments * remove landing page contents * rfix chronos install * refactor install * refactor chronos section titles * refactor nano index * change chronos landing * revise chronos landing page * add document navigator to nano landing page * revise install landing page * Improve css of versions in sidebar * Make handouts image pointing to a page in new tab * add win guide to install * add dliib installation * revise title bar * rename index files * add index page for user guide * add dllib and orca API * update user guide landing page * refactor side bar * Remove extra style configuration of card components & make different card usage consistent * Remove extra styles for Nano how-to guides * Remove extra styles for Chronos how-to guides * Remove dark mode for now * Update index page description * Add decision tree for choosing BigDL libraries in index page * add dllib models api, revise core layers formats * Change primary & info color in light mode * Restyle card components * Restructure Chronos landing page * Update card style * Update BigDL library selection decision tree * Fix failed Chronos tutorials filter * refactor PPML documents * refactor and add friesian documents * add friesian arch diagram * update landing pages and fill key features guide index page * Restyle link card component * Style video frames in PPML sections * Adjust Nano landing page * put api docs to the last in index for convinience * Make badge horizontal padding smaller & small changes * Change the second letter of all header titles to be small capitalizd * Small changes on Chronos index page * Revise decision tree to make it smaller * Update: try to change the position of ads. * Bugfix: deleted nonexist file config * Update: update ad JS/CSS/config * Update: change ad. * Update: delete my template and change files. * Update: change chronos installation table color. * Update: change table font color to --pst-color-primary-text * Remove old contents in landing page sidebar * Restyle badge for usage in card footer again * Add quicklinks template on landing page sidebar * add quick links * Add scala logo * move tf, pytorch out of the link * change orca key features cards * fix typo * fix a mistake in wording * Restyle badge for card footer * Update decision tree * Remove useless html templates * add more api docs and update tutorials in dllib * update chronos install using new style * merge changes in nano doc from master * fix quickstart links in sidebar quicklinks * Make tables responsive * Fix overflow in api doc * Fix list indents problems in [User guide] section * Further fixes to nested bullets contents in [User Guide] section * Fix strange title in Nano 5-min doc * Fix list indent problems in [DLlib] section * Fix misnumbered list problems and other small fixes for [Chronos] section * Fix list indent problems and other small fixes for [Friesian] section * Fix list indent problem and other small fixes for [PPML] section * Fix list indent problem for developer guide * Fix list indent problem for [Cluster Serving] section * fix dllib links * Fix wrong relative link in section landing page Co-authored-by: Yuwen Hu <yuwen.hu@intel.com> Co-authored-by: Juntao Luo <1072087358@qq.com>
		
			
				
	
	
	
	
		
			16 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	K8s User Guide
1. Pull bigdl-k8s Docker Image
You may pull the prebuilt  BigDL bigdl-k8s Image from Docker Hub as follows:
sudo docker pull intelanalytics/bigdl-k8s:latest
Speed up pulling image by adding mirrors
To speed up pulling the image from DockerHub, you may add the registry-mirrors key and value by editing daemon.json (located in /etc/docker/ folder on Linux):
{
  "registry-mirrors": ["https://<my-docker-mirror-host>"]
}
For instance, users in China may add the USTC mirror as follows:
{
  "registry-mirrors": ["https://docker.mirrors.ustc.edu.cn"]
}
After that, flush changes and restart docker:
sudo systemctl daemon-reload
sudo systemctl restart docker
2. Launch a Client Container
You can submit BigDL application from a client container that provides the required environment.
sudo docker run -itd --net=host \
    -v /etc/kubernetes:/etc/kubernetes \
    -v /root/.kube:/root/.kube \
    intelanalytics/bigdl-k8s:latest bash
Note: to create the client container, -v /etc/kubernetes:/etc/kubernetes: and -v /root/.kube:/root/.kube are required to specify the path of kube config and installation.
You can specify more arguments:
sudo docker run -itd --net=host \
    -v /etc/kubernetes:/etc/kubernetes \
    -v /root/.kube:/root/.kube \
    -e http_proxy=http://your-proxy-host:your-proxy-port \
    -e https_proxy=https://your-proxy-host:your-proxy-port \
    -e RUNTIME_SPARK_MASTER=k8s://https://<k8s-apiserver-host>:<k8s-apiserver-port> \
    -e RUNTIME_K8S_SERVICE_ACCOUNT=account \
    -e RUNTIME_K8S_SPARK_IMAGE=intelanalytics/bigdl-k8s:latest \
    -e RUNTIME_PERSISTENT_VOLUME_CLAIM=myvolumeclaim \
    -e RUNTIME_DRIVER_HOST=x.x.x.x \
    -e RUNTIME_DRIVER_PORT=54321 \
    -e RUNTIME_EXECUTOR_INSTANCES=1 \
    -e RUNTIME_EXECUTOR_CORES=4 \
    -e RUNTIME_EXECUTOR_MEMORY=20g \
    -e RUNTIME_TOTAL_EXECUTOR_CORES=4 \
    -e RUNTIME_DRIVER_CORES=4 \
    -e RUNTIME_DRIVER_MEMORY=10g \
    intelanalytics/bigdl-k8s:latest bash 
- http_proxy/https_proxy is to specify http proxy/https_proxy.
 - RUNTIME_SPARK_MASTER is to specify spark master, which should be 
k8s://https://<k8s-apiserver-host>:<k8s-apiserver-port>orspark://<spark-master-host>:<spark-master-port>. - RUNTIME_K8S_SERVICE_ACCOUNT is service account for driver pod. Please refer to k8s RBAC.
 - RUNTIME_K8S_SPARK_IMAGE is the k8s image.
 - RUNTIME_PERSISTENT_VOLUME_CLAIM is to specify Kubernetes volume mount. We are supposed to use volume mount to store or receive data.
 - RUNTIME_DRIVER_HOST/RUNTIME_DRIVER_PORT is to specify driver localhost and port number (only required when submitting jobs via kubernetes client mode).
 - Other environment variables are for spark configuration setting. The default values in this image are listed above. Replace the values as you need.
 
Once the container is created, execute the container:
sudo docker exec -it <containerID> bash
You will login into the container and see this as the output:
root@[hostname]:/opt/spark/work-dir# 
/opt/spark/work-dir is the spark work path.
The /opt directory contains:
- download-bigdl.sh is used for downloading BigDL distributions.
 - start-notebook-spark.sh is used for starting the jupyter notebook on standard spark cluster.
 - start-notebook-k8s.sh is used for starting the jupyter notebook on k8s cluster.
 - bigdl-x.x-SNAPSHOT is 
BIGDL_HOME, which is the home of BigDL distribution. - bigdl-examples directory contains downloaded python example code.
 - install-conda-env.sh is displayed that conda env and python dependencies are installed.
 - jdk is the jdk home.
 - spark is the spark home.
 - redis is the redis home.
 
3. Submit to k8s from remote
Instead of lanuching a client container, you can also submit BigDL application from a remote node with the following steps:
- 
Check the prerequisites of running Spark on Kubernetes.
- 
The remote node needs to properly setup the configurations and authentications of the k8s cluster (e.g. the
configfile under~/.kube, especially the server address in theconfig). - 
Install
kubectlon the remote node and run some sample commands for verification, for examplekubectl auth can-i <list|create|edit|delete> pods. Note that the installation ofkubectlis not a must for the remote node, but it is a useful tool to verify whether the remote node has access to the k8s cluster. - 
The environment variables
http_proxyandhttps_proxymay affect the connection usingkubectl. You may check and unset these environment variables in case you get errors when executing thekubectlcommands on the remote node. 
 - 
 - 
Follow the steps in the Python User Guide to install BigDL in a conda environment.
 
4. Run BigDL on k8s
Note: Please make sure kubectl has appropriate permission to create, list and delete pod.
You may refer to Section 5 for some known issues when running BigDL on k8s.
4.1 K8s client mode
We recommend using init_orca_context at the very beginning of your code (e.g. in script.py) to initiate and run BigDL on standard K8s clusters in client mode.
from bigdl.orca import init_orca_context
init_orca_context(cluster_mode="k8s", master="k8s://https://<k8s-apiserver-host>:<k8s-apiserver-port>",
                  container_image="intelanalytics/bigdl-k8s:latest",
                  num_nodes=2, cores=2, memory="2g")
Remark: You may need to specify Spark driver host and port if necessary by adding the argument: conf={"spark.driver.host": "x.x.x.x", "spark.driver.port": "x"}.
Execute python script.py to run your program on k8s cluster directly.
4.2 K8s cluster mode
For k8s cluster mode, you can call init_orca_context and specify cluster_mode to be "spark-submit" in your python script (e.g. in script.py):
from bigdl.orca import init_orca_context
init_orca_context(cluster_mode="spark-submit")
Use spark-submit to submit your BigDL program:
${SPARK_HOME}/bin/spark-submit \
  --master k8s://https://<k8s-apiserver-host>:<k8s-apiserver-port> \
  --deploy-mode cluster \
  --conf spark.kubernetes.authenticate.driver.serviceAccountName=account \
  --name bigdl \
  --conf spark.kubernetes.container.image="intelanalytics/bigdl-k8s:latest" \
  --conf spark.kubernetes.container.image.pullPolicy=Always \
  --conf spark.pyspark.driver.python=./env/bin/python \
  --conf spark.pyspark.python=./env/bin/python \
  --archives path/to/environment.tar.gz#env \
  --conf spark.executor.instances=1 \
  --executor-memory 10g \
  --driver-memory 10g \
  --executor-cores 8 \
  --num-executors 2 \
  --properties-file ${BIGDL_HOME}/conf/spark-bigdl.conf \
  --py-files local://${BIGDL_HOME}/python/bigdl-spark_${SPARK_VERSION}-${BIGDL_VERSION}-python-api.zip,local:///path/script.py
  --conf spark.driver.extraClassPath=local://${BIGDL_HOME}/jars/* \
  --conf spark.executor.extraClassPath=local://${BIGDL_HOME}/jars/* \
  local:///path/script.py
4.3 Run Jupyter Notebooks
After a Docker container is launched and user login into the container, you can start the Jupyter Notebook service inside the container.
In the /opt directory, run this command line to start the Jupyter Notebook service:
./start-notebook-k8s.sh
You will see the output message like below. This means the Jupyter Notebook service has started successfully within the container.
[I 23:51:08.456 NotebookApp] Serving notebooks from local directory: /opt/bigdl-2.1.0-SNAPSHOT/apps
[I 23:51:08.456 NotebookApp] Jupyter Notebook 6.2.0 is running at:
[I 23:51:08.456 NotebookApp] http://xxxx:12345/?token=...
[I 23:51:08.457 NotebookApp]  or http://127.0.0.1:12345/?token=...
[I 23:51:08.457 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
Then, refer docker guide to open Jupyter Notebook service from a browser and run notebook.
4.4 Run Scala programs
Use spark-submit to submit your BigDL program. e.g., run nnframes imageInference example (running in either local mode or cluster mode) as follows:
${SPARK_HOME}/bin/spark-submit \
  --master ${RUNTIME_SPARK_MASTER} \
  --deploy-mode client \
  --conf spark.driver.host=${RUNTIME_DRIVER_HOST} \
  --conf spark.driver.port=${RUNTIME_DRIVER_PORT} \
  --conf spark.kubernetes.authenticate.driver.serviceAccountName=${RUNTIME_K8S_SERVICE_ACCOUNT} \
  --name bigdl \
  --conf spark.kubernetes.container.image=${RUNTIME_K8S_SPARK_IMAGE} \
  --conf spark.executor.instances=${RUNTIME_EXECUTOR_INSTANCES} \
  --conf spark.kubernetes.driver.volumes.persistentVolumeClaim.${RUNTIME_PERSISTENT_VOLUME_CLAIM}.options.claimName=${RUNTIME_PERSISTENT_VOLUME_CLAIM} \
  --conf spark.kubernetes.driver.volumes.persistentVolumeClaim.${RUNTIME_PERSISTENT_VOLUME_CLAIM}.mount.path=/path \
  --conf spark.kubernetes.executor.volumes.persistentVolumeClaim.${RUNTIME_PERSISTENT_VOLUME_CLAIM}.options.claimName=${RUNTIME_PERSISTENT_VOLUME_CLAIM} \
  --conf spark.kubernetes.executor.volumes.persistentVolumeClaim.${RUNTIME_PERSISTENT_VOLUME_CLAIM}.mount.path=/path \
  --conf spark.kubernetes.driver.label.<your-label>=true \
  --conf spark.kubernetes.executor.label.<your-label>=true \
  --executor-cores ${RUNTIME_EXECUTOR_CORES} \
  --executor-memory ${RUNTIME_EXECUTOR_MEMORY} \
  --total-executor-cores ${RUNTIME_TOTAL_EXECUTOR_CORES} \
  --driver-cores ${RUNTIME_DRIVER_CORES} \
  --driver-memory ${RUNTIME_DRIVER_MEMORY} \
  --properties-file ${BIGDL_HOME}/conf/spark-bigdl.conf \
  --conf spark.driver.extraJavaOptions=-Dderby.stream.error.file=/tmp \
  --conf spark.sql.catalogImplementation='in-memory' \
  --conf spark.driver.extraClassPath=local://${BIGDL_HOME}/jars/*  \
  --conf spark.executor.extraClassPath=local://${BIGDL_HOME}/jars/*  \
  --class com.intel.analytics.bigdl.dllib.examples.nnframes.imageInference.ImageTransferLearning \
  ${BIGDL_HOME}/python/bigdl-spark_${SPARK_VERSION}-${BIGDL_VERSION}-python-api.zip \
  --inputDir /path
Options:
- --master: the spark mater, must be a URL with the format 
k8s://https://<k8s-apiserver-host>:<k8s-apiserver-port>. - --deploy-mode: submit application in client/cluster mode.
 - --name: the Spark application name.
 - --conf: to specify k8s service account, container image to use for the Spark application, driver volumes name and path, label of pods, spark driver and executor configuration, etc. You can refer to spark configuration and spark on k8s configuration for more details.
 - --properties-file: the customized conf properties.
 - --py-files: the extra python packages is needed.
 - --class: scala example class name.
 - --inputDir: input data path of the nnframe example. The data path is the mounted filesystem of the host. Refer to more details by Kubernetes Volumes.
 
5 Known Issues
This section shows some common topics for both client mode and cluster mode.
5.1 How to specify the Python environment?
In client mode, follow python user guide to install conda and BigDL and run application:
python script.py
In cluster mode, install conda, pack environment and use on both the driver and executor.
- Pack the current conda environment to 
environment.tar.gz(you can use any name you like):conda pack -o environment.tar.gz - spark-submit with "--archives" and specify python stores for dirver and executor
--conf spark.pyspark.driver.python=./env/bin/python \ --conf spark.pyspark.python=./env/bin/python \ --archives local:///bigdl2.0/data/environment.tar.gz#env \ # this path shoud be that k8s pod can access 
5.2 How to retain executor logs for debugging?
The k8s would delete the pod once the executor failed in client mode and cluster mode.  If you want to get the content of executor log, you could set "temp-dir" to a mounted network file system (NFS) storage to change the log dir to replace the former one. In this case, you may meet JSONDecodeError because multiple executors would write logs to the same physical folder and cause conflicts. The solutions are in the next section.
init_orca_context(..., extra_params = {"temp-dir": "/bigdl/"})
5.3 How to deal with "JSONDecodeError"?
If you set temp-dir to a mounted nfs storage and use multiple executors , you may meet JSONDecodeError since multiple executors would write to the same physical folder and cause conflicts. Do not mount temp-dir to shared storage is one option to avoid conflicts. But if you debug ray on k8s, you need to output logs to a shared storage. In this case, you could set num-nodes to 1. After testing, you can remove temp-dir setting and run multiple executors.
5.4 How to use NFS?
If you want to save some files out of pod's lifecycle, such as logging callbacks or tensorboard callbacks, you need to set the output dir to a mounted persistent volume dir. Let NFS be a simple example.
Use NFS in client mode:
init_orca_context(cluster_mode="k8s", ...,
                  conf={...,
                  "spark.kubernetes.executor.volumes.persistentVolumeClaim.nfsvolumeclaim.options.claimName":"nfsvolumeclaim",
                  "spark.kubernetes.executor.volumes.persistentVolumeClaim.nfsvolumeclaim.mount.path": "/bigdl" 
                  })
Use NFS in cluster mode:
${SPARK_HOME}/bin/spark-submit \
  --... ...\
  --conf spark.kubernetes.executor.volumes.persistentVolumeClaim.nfsvolumeclaim.options.claimName="nfsvolumeclaim" \
  --conf spark.kubernetes.executor.volumes.persistentVolumeClaim.nfsvolumeclaim.mount.path="/bigdl" \
  --conf spark.kubernetes.driver.volumes.persistentVolumeClaim.nfsvolumeclaim.options.claimName="nfsvolumeclaim" \
  --conf spark.kubernetes.driver.volumes.persistentVolumeClaim.nfsvolumeclaim.mount.path="/bigdl" \
  file:///path/script.py
5.5 How to deal with "RayActorError"?
"RayActorError" may caused by running out of the ray memory. If you meet this error, try to increase the memory for ray.
init_orca_context(..., extra_executor_memory_for_ray="100g")
5.6 How to set proper "steps_per_epoch" and "validation steps"?
The steps_per_epoch and validation_steps should equal to numbers of dataset divided by batch size if you want to train all dataset. The steps_per_epoch and validation_steps do not relate to the num_nodes when total dataset and batch size are fixed. For example, you set num_nodes to 1, and set steps_per_epoch to 6. If you change the num_nodes to 3, the steps_per_epoch should still be 6.
5.7 Others
spark.kubernetes.container.image.pullPolicy needs to be specified as always if you need to update your spark executor image for k8s.
6. Access logs and clear pods
When application is running, it’s possible to stream logs on the driver pod:
$ kubectl logs <spark-driver-pod>
To check pod status or to get some basic information around pod using:
$ kubectl describe pod <spark-driver-pod>
You can also check other pods using the similar way.
After finishing running the application, deleting the driver pod:
$ kubectl delete <spark-driver-pod>
Or clean up the entire spark application by pod label:
$ kubectl delete pod -l <pod label>