* Add quickstart for install IPEX-LLM with PyTorch 2.6 on Intel GPUs * Add jump links * Rename * Small fix * Small fix * Update based on comments * Small fix
		
			
				
	
	
		
			471 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			471 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
# 在带有 Intel GPU 的Linux系统上安装 IPEX-LLM
 | 
						||
<p>
 | 
						||
  < <a href='./install_linux_gpu.md'>English</a> | <b>中文</b> >
 | 
						||
</p>
 | 
						||
 | 
						||
本指南将引导你如何在带有 Intel GPU 的 Linux 系统上安装 IPEX-LLM。适用于 Intel 数据中心的 GPU Flex 和 Max 系列,以及 Intel Arc 系列 GPU 和 Intel iGPU。
 | 
						||
 | 
						||
> [!NOTE]
 | 
						||
> 如果需要安装 IPEX-LLM PyTorch 2.6 版本,请参阅本[指南](./install_pytorch26_gpu.md#linux-quickstart)获取详细信息。
 | 
						||
 | 
						||
> [!NOTE]
 | 
						||
> 如果是在 Intel Arc B 系列 GPU 上安装(例,**B580**),请参阅本[指南](./bmg_quickstart.md)。
 | 
						||
 | 
						||
> [!NOTE]
 | 
						||
> 如果是在 Windows 系统上安装,请参阅本[指南](./install_windows_gpu.zh-CN.md)。
 | 
						||
 | 
						||
我们建议使用带有 Linux 内核 6.2 或 6.5 的 Ubuntu 22.04 操作系统上使用 IPEX-LLM。本页演示了如何在 PyTorch 2.1 中使用 IPEX-LLM。你可以查看[完整安装页面](../Overview/install_gpu.md#linux)了解更多详细信息。
 | 
						||
 | 
						||
## 目录
 | 
						||
- [系统环境安装](./install_linux_gpu.zh-CN.md#系统环境安装)
 | 
						||
  - [安装 GPU 驱动程序](./install_linux_gpu.zh-CN.md#安装-GPU-驱动程序)
 | 
						||
    - [适用于处理器编号为 1xxH/U/HL/UL 的第一代 Intel Core™ Ultra Processors(代号 Meteor Lake)](./install_linux_gpu.zh-CN.md#适用于处理器编号为-1xxhuhlul-的第一代-intel-core-ultra-processors代号-meteor-lake)
 | 
						||
    - [适用于其他 Intel iGPU 和 dGPU](./install_linux_gpu.zh-CN.md#适用于其他-intel-igpu-和-dgpu)
 | 
						||
  - [安装 oneAPI](./install_linux_gpu.zh-CN.md#安装-oneapi)
 | 
						||
  - [设置 Python 环境](./install_linux_gpu.zh-CN.md#设置-python-环境)
 | 
						||
- [安装 ipex-llm](./install_linux_gpu.zh-CN.md#安装-ipex-llm)
 | 
						||
- [验证安装](./install_linux_gpu.zh-CN.md#验证安装)
 | 
						||
- [运行时配置](./install_linux_gpu.zh-CN.md#运行时配置)
 | 
						||
- [快速示例](./install_linux_gpu.zh-CN.md#快速示例)
 | 
						||
- [故障排除和提示](./install_linux_gpu.zh-CN.md#故障排除和提示)
 | 
						||
 | 
						||
## 系统环境安装
 | 
						||
 | 
						||
### 安装 GPU 驱动程序
 | 
						||
#### 适用于处理器编号为 1xxH/U/HL/UL 的第一代 Intel Core™ Ultra Processors(代号 Meteor Lake)
 | 
						||
 | 
						||
> [!NOTE]
 | 
						||
> 我们目前已在具有内核 `6.5.0-35-generic` 的 Ubuntu 22.04 系统中验证过 IPEX-LLM 在 Meteor Lake iGPU 上的运行和使用。
 | 
						||
 | 
						||
##### 1. 查看当前内核版本
 | 
						||
 | 
						||
你可以通过以下方式查看当前的内核版本:
 | 
						||
 | 
						||
```bash
 | 
						||
uname -r
 | 
						||
```
 | 
						||
如果显示的版本不是 `6.5.0-35-generic`,可以通过以下方式将内核降级或升级至推荐版本。
 | 
						||
 | 
						||
##### 2. (可选) 降级 / 升级到内核 6.5.0-35
 | 
						||
 | 
						||
如果当前的内核版本不是 `6.5.0-35-generic`,你可以通过以下方式降级或升级它:
 | 
						||
 | 
						||
```bash
 | 
						||
export VERSION="6.5.0-35"
 | 
						||
sudo apt-get install -y linux-headers-$VERSION-generic linux-image-$VERSION-generic linux-modules-extra-$VERSION-generic
 | 
						||
 | 
						||
sudo sed -i "s/GRUB_DEFAULT=.*/GRUB_DEFAULT=\"1> $(echo $(($(awk -F\' '/menuentry / {print $2}' /boot/grub/grub.cfg \
 | 
						||
| grep -no $VERSION | sed 's/:/\n/g' | head -n 1)-2)))\"/" /etc/default/grub
 | 
						||
 | 
						||
sudo update-grub
 | 
						||
```
 | 
						||
 | 
						||
然后重新启动机器:
 | 
						||
 | 
						||
```bash
 | 
						||
sudo reboot
 | 
						||
```
 | 
						||
 | 
						||
重启之后,再次使用 `uname -r` 查看,内核版本已经修改为 `6.5.0-35-generic`。
 | 
						||
 | 
						||
##### 3. 通过 `force_probe` flag 启用 GPU 驱动程序支持
 | 
						||
 | 
						||
接下来,你需要通过设置 `force_probe` 参数在内核 `6.5.0-35-generic` 上启用 GPU 驱动程序支持:
 | 
						||
 | 
						||
```bash
 | 
						||
export FORCE_PROBE_VALUE=$(sudo dmesg  | grep i915 | grep -o 'i915\.force_probe=[a-zA-Z0-9]\{4\}')
 | 
						||
 | 
						||
sudo sed -i "/^GRUB_CMDLINE_LINUX_DEFAULT=/ s/\"\(.*\)\"/\"\1 $FORCE_PROBE_VALUE\"/" /etc/default/grub
 | 
						||
```
 | 
						||
 | 
						||
> [!TIP]
 | 
						||
> 除了使用上述命令之外,你还可以通过以下方式手动查看 `force_probe` flag 的值:
 | 
						||
>
 | 
						||
> ```bash
 | 
						||
> sudo dmesg  | grep i915
 | 
						||
> ```
 | 
						||
>
 | 
						||
> 你可能会获得类似 `Your graphics device 7d55 is not properly supported by i915 in this kernel version. To force driver probe anyway, use i915.force_probe=7d55` 的输出,其中 `7d55` 是 PCI ID,它取决于你的 GPU 型号。
 | 
						||
>
 | 
						||
> 然后,直接修改 `/etc/default/grub` 文件。确保在 `GRUB_CMDLINE_LINUX_DEFAULT` 的值中添加 `i915.force_probe=xxxx`。例如,修改之前,`/etc/default/grub` 文件中有 `GRUB_CMDLINE_LINUX_DEFAULT="quiet splash"`。你需要将其修改为 `GRUB_CMDLINE_LINUX_DEFAULT="quiet splash i915.force_probe=7d55"`。
 | 
						||
 | 
						||
然后通过以下方式更新 grub:
 | 
						||
 | 
						||
```bash
 | 
						||
sudo update-grub
 | 
						||
```
 | 
						||
 | 
						||
需要重启机器使配置生效:
 | 
						||
 | 
						||
```bash
 | 
						||
sudo reboot
 | 
						||
```
 | 
						||
 | 
						||
##### 4. 安装 computer packages
 | 
						||
 | 
						||
通过以下命令在 Ubuntu 22.04 上为 Intel GPU 安装需要的 computer packages:
 | 
						||
 | 
						||
```bash
 | 
						||
wget -qO - https://repositories.intel.com/gpu/intel-graphics.key | \
 | 
						||
  sudo gpg --yes --dearmor --output /usr/share/keyrings/intel-graphics.gpg
 | 
						||
 | 
						||
echo "deb [arch=amd64,i386 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/gpu/ubuntu jammy client" | \
 | 
						||
  sudo tee /etc/apt/sources.list.d/intel-gpu-jammy.list
 | 
						||
 | 
						||
sudo apt update
 | 
						||
 | 
						||
sudo apt-get install -y libze1 intel-level-zero-gpu intel-opencl-icd clinfo
 | 
						||
```
 | 
						||
 | 
						||
##### 5. 配置权限并验证 GPU 驱动程序设置
 | 
						||
 | 
						||
要完成 GPU 驱动程序设置,需要确保你的用户在 render 群组中:
 | 
						||
 | 
						||
```bash
 | 
						||
sudo gpasswd -a ${USER} render
 | 
						||
newgrp render
 | 
						||
```
 | 
						||
 | 
						||
然后,你可以使用以下命令验证 GPU 驱动程序是否正常运行:
 | 
						||
 | 
						||
```bash
 | 
						||
clinfo | grep "Device Name"
 | 
						||
```
 | 
						||
 | 
						||
基于你的 GPU 型号,上述命令的输出应包含 `Intel(R) Arc(TM) Graphics` 或 `Intel(R) Graphics`。
 | 
						||
 | 
						||
> [!TIP]
 | 
						||
> 请参阅[客户端 GPU 驱动程序的 Intel 官方安装指南](https://dgpu-docs.intel.com/driver/client/overview.html#installing-client-gpus-on-ubuntu-desktop-22-04-lts)以获取更多详情。
 | 
						||
 | 
						||
#### 适用于其他 Intel iGPU 和 dGPU
 | 
						||
 | 
						||
##### Linux 内核 6.2
 | 
						||
 | 
						||
* 根据你的 CPU 类型选择以下其中一个选项进行设置:
 | 
						||
 | 
						||
  1. **选项 1**:对于配备多个 A770 Arc GPU 的 `Intel Core CPU`,使用以下 repository:
 | 
						||
      ```bash
 | 
						||
      sudo apt-get install -y gpg-agent wget
 | 
						||
      wget -qO - https://repositories.intel.com/gpu/intel-graphics.key | \
 | 
						||
      sudo gpg --dearmor --output /usr/share/keyrings/intel-graphics.gpg
 | 
						||
      echo "deb [arch=amd64,i386 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/gpu/ubuntu jammy client" | \
 | 
						||
      sudo tee /etc/apt/sources.list.d/intel-gpu-jammy.list
 | 
						||
      ```
 | 
						||
 | 
						||
  3. **选项 2**: 对于配备多个 A770 Arc GPU 的 `Intel Xeon-W/SP CPU`,使用以下 repository 可获得更好的性能:
 | 
						||
      ```bash
 | 
						||
      wget -qO - https://repositories.intel.com/gpu/intel-graphics.key | \
 | 
						||
      sudo gpg --yes --dearmor --output /usr/share/keyrings/intel-graphics.gpg
 | 
						||
      echo "deb [arch=amd64 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/gpu/ubuntu jammy/lts/2350 unified" | \
 | 
						||
      sudo tee /etc/apt/sources.list.d/intel-gpu-jammy.list
 | 
						||
      sudo apt update
 | 
						||
      ```
 | 
						||
 | 
						||
    <img src="https://llm-assets.readthedocs.io/en/latest/_images/wget.png" width=100%; />
 | 
						||
 | 
						||
* 安装驱动程序
 | 
						||
 | 
						||
    ```bash
 | 
						||
    sudo apt-get update
 | 
						||
 | 
						||
    # Install out-of-tree driver
 | 
						||
    sudo apt-get -y install \
 | 
						||
        gawk \
 | 
						||
        dkms \
 | 
						||
        linux-headers-$(uname -r) \
 | 
						||
        libc6-dev
 | 
						||
    sudo apt install intel-i915-dkms intel-fw-gpu
 | 
						||
 | 
						||
    # Install Compute Runtime
 | 
						||
    sudo apt-get install -y udev \
 | 
						||
        intel-opencl-icd intel-level-zero-gpu level-zero \
 | 
						||
        intel-media-va-driver-non-free libmfx1 libmfxgen1 libvpl2 \
 | 
						||
        libegl-mesa0 libegl1-mesa libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
 | 
						||
        libglapi-mesa libgles2-mesa-dev libglx-mesa0 libigdgmm12 libxatracker2 mesa-va-drivers \
 | 
						||
        mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo
 | 
						||
    
 | 
						||
    sudo reboot
 | 
						||
    ```
 | 
						||
 | 
						||
    <img src="https://llm-assets.readthedocs.io/en/latest/_images/i915.png" width=100%; />
 | 
						||
 | 
						||
    <img src="https://llm-assets.readthedocs.io/en/latest/_images/gawk.png" width=100%; />
 | 
						||
 | 
						||
 | 
						||
* 配置权限
 | 
						||
    ```bash
 | 
						||
    sudo gpasswd -a ${USER} render
 | 
						||
    newgrp render
 | 
						||
 | 
						||
    # Verify the device is working with i915 driver
 | 
						||
    sudo apt-get install -y hwinfo
 | 
						||
    hwinfo --display
 | 
						||
    ```
 | 
						||
 | 
						||
##### Linux 内核 6.5
 | 
						||
 | 
						||
* 根据你的 CPU 类型选择以下其中一个选项安装:
 | 
						||
 | 
						||
  1. **选项 1**: 对于配备多个 A770 Arc GPU 的 `Intel Core CPU`,使用以下 repository:
 | 
						||
      ```bash
 | 
						||
      sudo apt-get install -y gpg-agent wget
 | 
						||
      wget -qO - https://repositories.intel.com/gpu/intel-graphics.key | \
 | 
						||
      sudo gpg --dearmor --output /usr/share/keyrings/intel-graphics.gpg
 | 
						||
      echo "deb [arch=amd64,i386 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/gpu/ubuntu jammy client" | \
 | 
						||
      sudo tee /etc/apt/sources.list.d/intel-gpu-jammy.list
 | 
						||
      ```
 | 
						||
 | 
						||
  2. **选项 2**: 对于配备多个 A770 Arc GPU 的 `Intel Xeon-W/SP CPU`,使用以下 repository 可获得更好的性能:
 | 
						||
      ```bash
 | 
						||
      wget -qO - https://repositories.intel.com/gpu/intel-graphics.key | \
 | 
						||
      sudo gpg --yes --dearmor --output /usr/share/keyrings/intel-graphics.gpg
 | 
						||
      echo "deb [arch=amd64 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/gpu/ubuntu jammy/lts/2350 unified" | \
 | 
						||
      sudo tee /etc/apt/sources.list.d/intel-gpu-jammy.list
 | 
						||
      sudo apt update
 | 
						||
      ```
 | 
						||
 | 
						||
    <img src="https://llm-assets.readthedocs.io/en/latest/_images/wget.png" width=100%; />
 | 
						||
 | 
						||
* 安装驱动程序
 | 
						||
 | 
						||
    ```bash
 | 
						||
    sudo apt-get update
 | 
						||
 | 
						||
    # Install out-of-tree driver
 | 
						||
    sudo apt-get -y install \
 | 
						||
        gawk \
 | 
						||
        dkms \
 | 
						||
        linux-headers-$(uname -r) \
 | 
						||
        libc6-dev
 | 
						||
    sudo apt install -y intel-i915-dkms intel-fw-gpu
 | 
						||
 | 
						||
    # Install Compute Runtime
 | 
						||
    sudo apt-get install -y udev \
 | 
						||
        intel-opencl-icd intel-level-zero-gpu level-zero \
 | 
						||
        intel-media-va-driver-non-free libmfx1 libmfxgen1 libvpl2 \
 | 
						||
        libegl-mesa0 libegl1-mesa libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
 | 
						||
        libglapi-mesa libgles2-mesa-dev libglx-mesa0 libigdgmm12 libxatracker2 mesa-va-drivers \
 | 
						||
        mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo
 | 
						||
  
 | 
						||
    sudo reboot
 | 
						||
    ```
 | 
						||
 | 
						||
    <img src="https://llm-assets.readthedocs.io/en/latest/_images/gawk.png" width=100%; />
 | 
						||
 | 
						||
* 配置权限
 | 
						||
    ```bash
 | 
						||
    sudo gpasswd -a ${USER} render
 | 
						||
    newgrp render
 | 
						||
 | 
						||
    # Verify the device is working with i915 driver
 | 
						||
    sudo apt-get install -y hwinfo
 | 
						||
    hwinfo --display
 | 
						||
    ```
 | 
						||
 | 
						||
### 安装 oneAPI 
 | 
						||
IPEX-LLM 需要在 Linux 上安装适用于 Intel GPU 的 oneAPI 2024.0。
 | 
						||
 | 
						||
  ```bash
 | 
						||
  wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | gpg --dearmor | sudo tee /usr/share/keyrings/oneapi-archive-keyring.gpg > /dev/null
 | 
						||
 | 
						||
  echo "deb [signed-by=/usr/share/keyrings/oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main" | sudo tee /etc/apt/sources.list.d/oneAPI.list
 | 
						||
  
 | 
						||
  sudo apt update
 | 
						||
 | 
						||
  sudo apt install intel-oneapi-common-vars=2024.0.0-49406 \
 | 
						||
    intel-oneapi-common-oneapi-vars=2024.0.0-49406 \
 | 
						||
    intel-oneapi-diagnostics-utility=2024.0.0-49093 \
 | 
						||
    intel-oneapi-compiler-dpcpp-cpp=2024.0.2-49895 \
 | 
						||
    intel-oneapi-dpcpp-ct=2024.0.0-49381 \
 | 
						||
    intel-oneapi-mkl=2024.0.0-49656 \
 | 
						||
    intel-oneapi-mkl-devel=2024.0.0-49656 \
 | 
						||
    intel-oneapi-mpi=2021.11.0-49493 \
 | 
						||
    intel-oneapi-mpi-devel=2021.11.0-49493 \
 | 
						||
    intel-oneapi-dal=2024.0.1-25 \
 | 
						||
    intel-oneapi-dal-devel=2024.0.1-25 \
 | 
						||
    intel-oneapi-ippcp=2021.9.1-5 \
 | 
						||
    intel-oneapi-ippcp-devel=2021.9.1-5 \
 | 
						||
    intel-oneapi-ipp=2021.10.1-13 \
 | 
						||
    intel-oneapi-ipp-devel=2021.10.1-13 \
 | 
						||
    intel-oneapi-tlt=2024.0.0-352 \
 | 
						||
    intel-oneapi-ccl=2021.11.2-5 \
 | 
						||
    intel-oneapi-ccl-devel=2021.11.2-5 \
 | 
						||
    intel-oneapi-dnnl-devel=2024.0.0-49521 \
 | 
						||
    intel-oneapi-dnnl=2024.0.0-49521 \
 | 
						||
    intel-oneapi-tcm-1.0=1.0.0-435
 | 
						||
  ```
 | 
						||
  <img src="https://llm-assets.readthedocs.io/en/latest/_images/oneapi.png" alt="image-20240221102252565" width=100%; />
 | 
						||
 | 
						||
  <img src="https://llm-assets.readthedocs.io/en/latest/_images/basekit.png" alt="image-20240221102252565" width=100%; />
 | 
						||
 | 
						||
>[!IMPORTANT]
 | 
						||
> 请务必在 GPU 驱动程序和 oneAPI 安装完成后重新启动机器:
 | 
						||
>
 | 
						||
> ```bash
 | 
						||
> sudo reboot
 | 
						||
> ```
 | 
						||
 | 
						||
### 设置 Python 环境
 | 
						||
 
 | 
						||
如果你的机器上没有安装 conda,请按如下方式下载并安装 Miniforge:
 | 
						||
  ```bash
 | 
						||
  wget https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Linux-x86_64.sh
 | 
						||
  bash Miniforge3-Linux-x86_64.sh
 | 
						||
  source ~/.bashrc
 | 
						||
  ```
 | 
						||
 | 
						||
你可以使用 `conda --version` 来确认 conda 已安装成功。
 | 
						||
 | 
						||
conda 安装完成后,创建一个新的 Python 环境 `llm`:
 | 
						||
```bash
 | 
						||
conda create -n llm python=3.11
 | 
						||
```
 | 
						||
激活新创建的 `llm` 环境:
 | 
						||
```bash
 | 
						||
conda activate llm
 | 
						||
```
 | 
						||
 | 
						||
## 安装 `ipex-llm`
 | 
						||
 | 
						||
在已激活的 `llm` 环境,使用 `pip` 安装适用于 GPU 的 `ipex-llm`。可根据区域选择不同的 `extra-index-url`,提供 US 和 CN 两个选项:
 | 
						||
 | 
						||
- **US**:
 | 
						||
 | 
						||
  ```bash
 | 
						||
  pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
						||
  ```
 | 
						||
 | 
						||
- **CN**:
 | 
						||
 | 
						||
  ```bash
 | 
						||
  pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/cn/
 | 
						||
  ```
 | 
						||
 | 
						||
> [!NOTE]
 | 
						||
> 如果在安装 IPEX 时遇到网络问题,请参阅[本指南](../Overview/install_gpu.md#install-ipex-llm-from-wheel-1)获取故障排除建议。
 | 
						||
 | 
						||
## 验证安装
 | 
						||
- 你可以通过从库中导入一些类来验证 `ipex-llm` 是否安装成功。例如,在终端中执行以下导入命令:
 | 
						||
 | 
						||
  ```bash
 | 
						||
  source /opt/intel/oneapi/setvars.sh
 | 
						||
 | 
						||
  python
 | 
						||
 | 
						||
  > from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
 | 
						||
  ```
 | 
						||
 | 
						||
## 运行时配置
 | 
						||
 | 
						||
要在 Linux 上使用 GPU 加速,需要和推荐设置多个环境变量。根据你的 GPU 设备选择相应的配置:
 | 
						||
 | 
						||
- **Intel Arc™ A 系列和 Intel 数据中心 Flex 系列 GPU**:
 | 
						||
 | 
						||
  对于 Intel Arc™ A 系列和 Intel 数据中心 Flex 系列 GPU,推荐使用:
 | 
						||
 | 
						||
  ```bash
 | 
						||
  # Configure oneAPI environment variables. 
 | 
						||
  source /opt/intel/oneapi/setvars.sh
 | 
						||
 | 
						||
  # Recommended Environment Variables for optimal performance
 | 
						||
  export USE_XETLA=OFF
 | 
						||
  export SYCL_CACHE_PERSISTENT=1
 | 
						||
  # [optional] under most circumstances, the following environment variable may improve performance, but sometimes this may also cause performance degradation
 | 
						||
  export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
						||
  ```
 | 
						||
 | 
						||
- **Intel 数据中心 Max 系列 GPU**:
 | 
						||
 | 
						||
  我们建议使用如下环境变量:
 | 
						||
 | 
						||
  ```bash
 | 
						||
  # Configure oneAPI environment variables. 
 | 
						||
  source /opt/intel/oneapi/setvars.sh
 | 
						||
 | 
						||
  # Recommended Environment Variables for optimal performance
 | 
						||
  export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
 | 
						||
  export SYCL_CACHE_PERSISTENT=1
 | 
						||
  export ENABLE_SDP_FUSION=1
 | 
						||
  # [optional] under most circumstances, the following environment variable may improve performance, but sometimes this may also cause performance degradation
 | 
						||
  export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
						||
  ```
 | 
						||
 | 
						||
  请注意 `libtcmalloc.so` 可以通过 `conda install -c conda-forge -y gperftools=2.10` 安装。
 | 
						||
 | 
						||
- **Intel iGPU**:
 | 
						||
 | 
						||
  ```bash
 | 
						||
  # Configure oneAPI environment variables. 
 | 
						||
  source /opt/intel/oneapi/setvars.sh
 | 
						||
 | 
						||
  export SYCL_CACHE_PERSISTENT=1
 | 
						||
  ```
 | 
						||
 | 
						||
> [!NOTE]
 | 
						||
> 有关运行时配置的更多详细信息,请参阅[本指南](../Overview/install_gpu.md#runtime-configuration-1)。
 | 
						||
 | 
						||
> [!NOTE]
 | 
						||
> 环境变量 `SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS` 用于控制是否使用即时命令列表将任务提交到 GPU。启动此变量通常可以提高性能,但也有例外情况。因此,建议你在启用和禁用该环境变量的情况下进行测试,以找到最佳的性能设置。更多相关细节请参考[此处文档](https://www.intel.com/content/www/us/en/developer/articles/guide/level-zero-immediate-command-lists.html)。
 | 
						||
 | 
						||
## 快速示例
 | 
						||
 | 
						||
现在,让我们体验一下真实的大型语言模型(LLM)。本示例将使用 [phi-1.5](https://huggingface.co/microsoft/phi-1_5) 模型,一个具有13亿个参数的 LLM。请按照以下步骤设置和运行模型,并观察它如何对提示 "What is AI?" 做出响应。
 | 
						||
 | 
						||
- 步骤 1:激活之前创建的 `llm` Python 环境:
 | 
						||
 | 
						||
   ```bash
 | 
						||
   conda activate llm
 | 
						||
   ```
 | 
						||
 | 
						||
- 步骤 2:按照上述[运行时配置](#运行时配置)章节,准备运行时环境。
 | 
						||
 | 
						||
- 步骤 3:创建一个名为 `demo.py` 新文件,并将如下代码复制进其中:
 | 
						||
 | 
						||
   ```python
 | 
						||
   # Copy/Paste the contents to a new file demo.py
 | 
						||
   import torch
 | 
						||
   from ipex_llm.transformers import AutoModelForCausalLM
 | 
						||
   from transformers import AutoTokenizer, GenerationConfig
 | 
						||
   generation_config = GenerationConfig(use_cache = True)
 | 
						||
   
 | 
						||
   tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b", trust_remote_code=True)
 | 
						||
   # load Model using ipex-llm and load it to GPU
 | 
						||
   model = AutoModelForCausalLM.from_pretrained(
 | 
						||
       "tiiuae/falcon-7b", load_in_4bit=True, cpu_embedding=True, trust_remote_code=True)
 | 
						||
   model = model.to('xpu')
 | 
						||
 | 
						||
   # Format the prompt
 | 
						||
   question = "What is AI?"
 | 
						||
   prompt = " Question:{prompt}\n\n Answer:".format(prompt=question)
 | 
						||
   # Generate predicted tokens
 | 
						||
   with torch.inference_mode():
 | 
						||
       input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
						||
       # warm up one more time before the actual generation task for the first run, see details in `Tips & Troubleshooting`
 | 
						||
       # output = model.generate(input_ids, do_sample=False, max_new_tokens=32, generation_config = generation_config)
 | 
						||
       output = model.generate(input_ids, do_sample=False, max_new_tokens=32, generation_config = generation_config).cpu()
 | 
						||
       output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
						||
       print(output_str)
 | 
						||
   ```
 | 
						||
 | 
						||
   > **提示**:
 | 
						||
   >
 | 
						||
   > 在内存有限的 Intel iGPU 上运行大语言模型时,我们建议在 `from_pretrained` 函数中设置 `cpu_embedding=True`。这将使内存占用较大的 embedding 层使用 CPU 而非 GPU。
 | 
						||
 | 
						||
- 步骤 4:在已激活的 Python 环境中使用以下命令运行 `demo.py`:
 | 
						||
 | 
						||
  ```bash
 | 
						||
  python demo.py
 | 
						||
  ```
 | 
						||
   
 | 
						||
### 示例输出
 | 
						||
 | 
						||
以下是在一个配备第 11 代 Intel Core i7 CPU 和 Iris Xe Graphics iGPU 的系统上的示例输出:
 | 
						||
```
 | 
						||
Question:What is AI?
 | 
						||
Answer: AI stands for Artificial Intelligence, which is the simulation of human intelligence in machines.
 | 
						||
```
 | 
						||
 | 
						||
## 提示和故障排除
 | 
						||
 | 
						||
### 首次运行时进行 Warm-up 以获得最佳性能
 | 
						||
首次在 GPU 上运行大语言模型时,你可能会注意到性能低于预期,在生成第一个 token 之前可能会有长达几分钟的延迟。发生这种延迟是因为 GPU 内核需要编译和初始化,这在不同类型的 GPU 之间会有所差异。为获得最佳稳定的性能,我们推荐在正式生成任务开始之前,额外运行一次 `model.generate(...)` 做为 warm-up。如果你正在开发应用程序,你可以将此 warm-up 步骤集成到启动或加载流程中以加强用户体验。
 |