ipex-llm/docs/readthedocs/source/doc/DLlib/Overview/dllib.md
Yuwen Hu 0407ebf5c3 [Doc] Remove manually-added bold styles for titles (#6215)
* Remove manually-added bold style for titles in [User guide] section

* Fix failed relative links in windows user guide

* Remove manually-added bold style for titles in [Orca] section

* Fix failed relative links & title bold fix in Nano 5 min

* Remove manually-added bold style for titles in [Nano] section

* Remove manually-added bold style for titles in [DLlib] section

* Remove manually-added bold style for titles in [Chronos] section

* Remove manually-added bold style for titles in Developer guide

* Remove manually-added bold title style for all other not-included md files in docs/readthedocs/source/doc folder

* Fix based on comments
2022-10-20 13:48:22 +08:00

139 lines
No EOL
5.1 KiB
Markdown

# DLlib in 5 minutes
## Overview
DLlib is a distributed deep learning library for Apache Spark; with DLlib, users can write their deep learning applications as standard Spark programs (using either Scala or Python APIs).
It includes the functionalities of the [original BigDL](https://github.com/intel-analytics/BigDL/tree/branch-0.14) project, and provides following high-level APIs for distributed deep learning on Spark:
* [Keras-like API](keras-api.md)
* [Spark ML pipeline support](nnframes.md)
---
## Scala Example
This section show a single example of how to use dllib to build a deep learning application on Spark, using Keras APIs
#### LeNet Model on MNIST using Keras-Style API
This tutorial is an explanation of what is happening in the [lenet](https://github.com/intel-analytics/BigDL/tree/branch-2.0/scala/dllib/src/main/scala/com/intel/analytics/bigdl/dllib/example/keras) example
A bigdl-dllib program starts with initialize as follows.
````scala
val conf = Engine.createSparkConf()
.setAppName("Train Lenet on MNIST")
.set("spark.task.maxFailures", "1")
val sc = new SparkContext(conf)
Engine.init
````
After the initialization, we need to:
1. Load train and validation data by _**creating the [```DataSet```](https://github.com/intel-analytics/BigDL/blob/branch-2.0/scala/dllib/src/main/scala/com/intel/analytics/bigdl/dllib/feature/dataset/DataSet.scala)**_ (e.g., ````SampleToGreyImg````, ````GreyImgNormalizer```` and ````GreyImgToBatch````):
````scala
val trainSet = (if (sc.isDefined) {
DataSet.array(load(trainData, trainLabel), sc.get, param.nodeNumber)
} else {
DataSet.array(load(trainData, trainLabel))
}) -> SampleToGreyImg(28, 28) -> GreyImgNormalizer(trainMean, trainStd) -> GreyImgToBatch(
param.batchSize)
val validationSet = DataSet.array(load(validationData, validationLabel), sc) ->
BytesToGreyImg(28, 28) -> GreyImgNormalizer(testMean, testStd) -> GreyImgToBatch(
param.batchSize)
````
2. We then define Lenet model using Keras-style api
````scala
val input = Input(inputShape = Shape(28, 28, 1))
val reshape = Reshape(Array(1, 28, 28)).inputs(input)
val conv1 = Convolution2D(6, 5, 5, activation = "tanh").setName("conv1_5x5").inputs(reshape)
val pool1 = MaxPooling2D().inputs(conv1)
val conv2 = Convolution2D(12, 5, 5, activation = "tanh").setName("conv2_5x5").inputs(pool1)
val pool2 = MaxPooling2D().inputs(conv2)
val flatten = Flatten().inputs(pool2)
val fc1 = Dense(100, activation = "tanh").setName("fc1").inputs(flatten)
val fc2 = Dense(classNum, activation = "softmax").setName("fc2").inputs(fc1)
Model(input, fc2)
````
3. After that, we configure the learning process. Set the ````optimization method```` and the ````Criterion```` (which, given input and target, computes gradient per given loss function):
````scala
model.compile(optimizer = optimMethod,
loss = ClassNLLCriterion[Float](logProbAsInput = false),
metrics = Array(new Top1Accuracy[Float](), new Top5Accuracy[Float](), new Loss[Float]))
````
Finally we _**train the model**_ by calling ````model.fit````:
````scala
model.fit(trainSet, nbEpoch = param.maxEpoch, validationData = validationSet)
````
---
## Python Example
#### Initialize NN Context
`NNContext` is the main entry for provisioning the dllib program on the underlying cluster (such as K8s or Hadoop cluster), or just on a single laptop.
An dlllib program usually starts with the initialization of `NNContext` as follows:
```python
from bigdl.dllib.nncontext import *
init_nncontext()
```
In `init_nncontext`, the user may specify cluster mode for the dllib program:
- *Cluster mode=*: "local", "yarn-client", "yarn-cluster", "k8s-client", "standalone" and "spark-submit". Default to be "local".
The dllib program simply runs `init_nncontext` on the local machine, which will automatically provision the runtime Python environment and distributed execution engine on the underlying computing environment (such as a single laptop, a large K8s or Hadoop cluster, etc.).
#### Autograd Examples using bigdl-dllb keras Python API
This tutorial describes the [Autograd](https://github.com/intel-analytics/BigDL/tree/branch-2.0/python/dllib/examples/autograd).
The example first do the initializton using `init_nncontext()`:
```python
sc = init_nncontext()
```
It then generate the input data X_, Y_
```python
data_len = 1000
X_ = np.random.uniform(0, 1, (1000, 2))
Y_ = ((2 * X_).sum(1) + 0.4).reshape([data_len, 1])
```
It then define the custom loss
```python
def mean_absolute_error(y_true, y_pred):
result = mean(abs(y_true - y_pred), axis=1)
return result
```
After that, the example creates the model as follows and set the criterion as the custom loss:
```python
a = Input(shape=(2,))
b = Dense(1)(a)
c = Lambda(function=add_one_func)(b)
model = Model(input=a, output=c)
model.compile(optimizer=SGD(learningrate=1e-2),
loss=mean_absolute_error)
```
Finally the example trains the model by calling `model.fit`:
```python
model.fit(x=X_,
y=Y_,
batch_size=32,
nb_epoch=int(options.nb_epoch),
distributed=False)
```