ipex-llm/python/llm/example/CPU/HF-Transformers-AutoModels/Model/llama3
Yang Wang 8153c3008e
Initial llama3 example (#10799)
* Add initial hf huggingface GPU example

* Small fix

* Add llama3 gpu pytorch model example

* Add llama 3 hf transformers CPU example

* Add llama 3 pytorch model CPU example

* Fixes

* Small fix

* Small fixes

* Small fix

* Small fix

* Add links

* update repo id

* change prompt tuning url

* remove system header if there is no system prompt

---------

Co-authored-by: Yuwen Hu <yuwen.hu@intel.com>
Co-authored-by: Yuwen Hu <54161268+Oscilloscope98@users.noreply.github.com>
2024-04-18 11:01:33 -07:00
..
generate.py Initial llama3 example (#10799) 2024-04-18 11:01:33 -07:00
README.md Initial llama3 example (#10799) 2024-04-18 11:01:33 -07:00

Llama3

In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Llama3 models. For illustration purposes, we utilize the meta-llama/Meta-Llama-3-8B-Instruct as a reference Llama3 model.

0. Requirements

To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to here for more information.

Example: Predict Tokens using generate() API

In the example generate.py, we show a basic use case for a Llama3 model to predict the next N tokens using generate() API, with IPEX-LLM INT4 optimizations.

1. Install

We suggest using conda to manage environment:

conda create -n llm python=3.11
conda activate llm

pip install --pre --upgrade ipex-llm[all] # install ipex-llm with 'all' option

# transformers>=4.33.0 is required for Llama3 with IPEX-LLM optimizations
pip install transformers==4.37.0 

2. Run

python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT

Arguments info:

  • --repo-id-or-model-path REPO_ID_OR_MODEL_PATH: argument defining the huggingface repo id for the Llama3 model (e.g. meta-llama/Meta-Llama-3-8B-Instruct) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be 'meta-llama/Meta-Llama-3-8B-Instruct'.
  • --prompt PROMPT: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be 'What is AI?'.
  • --n-predict N_PREDICT: argument defining the max number of tokens to predict. It is default to be 32.

Note

: When loading the model in 4-bit, IPEX-LLM converts linear layers in the model into INT4 format. In theory, a XB model saved in 16-bit will requires approximately 2X GB of memory for loading, and ~0.5X GB memory for further inference.

Please select the appropriate size of the Llama3 model based on the capabilities of your machine.

2.1 Client

On client Windows machine, it is recommended to run directly with full utilization of all cores:

python ./generate.py 

2.2 Server

For optimal performance on server, it is recommended to set several environment variables (refer to here for more information), and run the example with all the physical cores of a single socket.

E.g. on Linux,

# set IPEX-LLM env variables
source ipex-llm-init

# e.g. for a server with 48 cores per socket
export OMP_NUM_THREADS=48
numactl -C 0-47 -m 0 python ./generate.py

2.3 Sample Output

meta-llama/Meta-Llama-3-8B-Instruct

Inference time: xxxx s
-------------------- Prompt --------------------
<|begin_of_text|><|start_header_id|>user<|end_header_id|>
What is AI?<|eot_id|><|start_header_id|>assistant<|end_header_id|>

-------------------- Output (skip_special_tokens=False) --------------------
<|begin_of_text|><|start_header_id|>user<|end_header_id|>
What is AI?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
A question that gets to the heart of the 21st century!

Artificial Intelligence (AI) refers to the development of computer systems that can perform tasks that