4.5 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	Scale TensorFlow 1.15 Applications
Run in Google Colab  
View source on GitHub
In this guide we will describe how to scale out TensorFlow 1.15 programs using Orca in 4 simple steps.
Step 0: Prepare Environment
We recommend using conda to prepare the environment. Please refer to the install guide for more details.
conda create -n py37 python=3.7  # "py37" is conda environment name, you can use any name you like.
conda activate py37
pip install bigdl-orca
pip install tensorflow==1.15
pip install tensorflow-datasets==2.0
pip install psutil
Step 1: Init Orca Context
from bigdl.orca import init_orca_context, stop_orca_context
if cluster_mode == "local":  # For local machine
    init_orca_context(cluster_mode="local", cores=4, memory="4g")
elif cluster_mode == "k8s":  # For K8s cluster
    init_orca_context(cluster_mode="k8s", num_nodes=2, cores=2, memory="4g", master=..., container_image=...)
elif cluster_mode == "yarn":  # For Hadoop/YARN cluster
    init_orca_context(cluster_mode="yarn", num_nodes=2, cores=2, memory="4g")
This is the only place where you need to specify local or distributed mode. View Orca Context for more details.
Please check the tutorials if you want to run on Kubernetes or Hadoop/YARN clusters.
Step 2: Define the Model
You may define your model, loss and metrics in the same way as in any standard (single node) TensorFlow program.
import tensorflow as tf
def accuracy(logits, labels):
    predictions = tf.argmax(logits, axis=1, output_type=labels.dtype)
    is_correct = tf.cast(tf.equal(predictions, labels), dtype=tf.float32)
    return tf.reduce_mean(is_correct)
def lenet(images):
    with tf.variable_scope('LeNet', [images]):
        net = tf.layers.conv2d(images, 32, (5, 5), activation=tf.nn.relu, name='conv1')
        net = tf.layers.max_pooling2d(net, (2, 2), 2, name='pool1')
        net = tf.layers.conv2d(net, 64, (5, 5), activation=tf.nn.relu, name='conv2')
        net = tf.layers.max_pooling2d(net, (2, 2), 2, name='pool2')
        net = tf.layers.flatten(net)
        net = tf.layers.dense(net, 1024, activation=tf.nn.relu, name='fc3')
        logits = tf.layers.dense(net, 10)
        return logits
# tensorflow inputs
images = tf.placeholder(dtype=tf.float32, shape=(None, 28, 28, 1))
# tensorflow labels
labels = tf.placeholder(dtype=tf.int32, shape=(None,))
logits = lenet(images)
loss = tf.reduce_mean(tf.losses.sparse_softmax_cross_entropy(logits=logits, labels=labels))
acc = accuracy(logits, labels)
Step 3: Define Train Dataset
You can define the dataset using standard tf.data.Dataset. Orca also supports Spark DataFrame and Orca XShards.
import tensorflow_datasets as tfds
def preprocess(data):
    data['image'] = tf.cast(data["image"], tf.float32) / 255.
    return data['image'], data['label']
# get DataSet
mnist_train = tfds.load(name="mnist", split="train", data_dir=...)
mnist_test = tfds.load(name="mnist", split="test", data_dir=...)
mnist_train = mnist_train.map(preprocess)
mnist_test = mnist_test.map(preprocess)
Step 4: Fit with Orca Estimator
First, create an Orca Estimator for TensorFlow.
from bigdl.orca.learn.tf.estimator import Estimator
est = Estimator.from_graph(inputs=images,
                           outputs=logits,
                           labels=labels,
                           loss=loss,
                           optimizer=tf.train.AdamOptimizer(),
                           metrics={"acc": acc})
Next, fit and evaluate using the Estimator.
est.fit(data=mnist_train,
        batch_size=320,
        epochs=5,
        validation_data=mnist_test)
result = est.evaluate(mnist_test)
print(result)
Note: You should call stop_orca_context() when your program finishes.
That's it, the same code can run seamlessly on your local laptop and scale to Kubernetes or Hadoop/YARN clusters.