108 lines
4.4 KiB
Markdown
108 lines
4.4 KiB
Markdown
# ChatGLM2
|
||
|
||
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on ChatGLM2 models on [Intel GPUs](../README.md). For illustration purposes, we utilize the [THUDM/chatglm2-6b](https://huggingface.co/THUDM/chatglm2-6b) as a reference ChatGLM2 model.
|
||
|
||
## 0. Requirements
|
||
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||
|
||
## Example 1: Predict Tokens using `generate()` API
|
||
In the example [generate.py](./generate.py), we show a basic use case for a ChatGLM2 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
|
||
### 1. Install
|
||
We suggest using conda to manage environment:
|
||
```bash
|
||
conda create -n llm python=3.9
|
||
conda activate llm
|
||
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
|
||
# you can install specific ipex/torch version for your need
|
||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
|
||
```
|
||
|
||
### 2. Configures OneAPI environment variables
|
||
```bash
|
||
source /opt/intel/oneapi/setvars.sh
|
||
```
|
||
|
||
### 3. Run
|
||
|
||
For optimal performance on Arc, it is recommended to set several environment variables.
|
||
|
||
```bash
|
||
export USE_XETLA=OFF
|
||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||
```
|
||
|
||
```
|
||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
|
||
```
|
||
|
||
Arguments info:
|
||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the ChatGLM2 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/chatglm2-6b'`.
|
||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
|
||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||
|
||
#### Sample Output
|
||
#### [THUDM/chatglm2-6b](https://huggingface.co/THUDM/chatglm2-6b)
|
||
```log
|
||
Inference time: xxxx s
|
||
-------------------- Prompt --------------------
|
||
问:AI是什么?
|
||
|
||
答:
|
||
-------------------- Output --------------------
|
||
问:AI是什么?
|
||
|
||
答: AI指的是人工智能,是一种能够通过学习和推理来执行任务的计算机程序。它可以模仿人类的思维方式,做出类似人类的决策,并且具有自主学习、自我
|
||
```
|
||
|
||
```log
|
||
Inference time: xxxx s
|
||
-------------------- Prompt --------------------
|
||
问:What is AI?
|
||
|
||
答:
|
||
-------------------- Output --------------------
|
||
问:What is AI?
|
||
|
||
答: Artificial Intelligence (AI) refers to the ability of a computer or machine to perform tasks that typically require human-like intelligence, such as understanding language, recognizing patterns
|
||
```
|
||
|
||
## Example 2: Stream Chat using `stream_chat()` API
|
||
In the example [streamchat.py](./streamchat.py), we show a basic use case for a ChatGLM2 model to stream chat, with BigDL-LLM INT4 optimizations.
|
||
### 1. Install
|
||
We suggest using conda to manage environment:
|
||
```bash
|
||
conda create -n llm python=3.9
|
||
conda activate llm
|
||
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
|
||
# you can install specific ipex/torch version for your need
|
||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
|
||
```
|
||
|
||
### 2. Configures OneAPI environment variables
|
||
```bash
|
||
source /opt/intel/oneapi/setvars.sh
|
||
```
|
||
|
||
### 3. Run
|
||
|
||
For optimal performance on Arc, it is recommended to set several environment variables.
|
||
|
||
```bash
|
||
export USE_XETLA=OFF
|
||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||
```
|
||
|
||
**Stream Chat using `stream_chat()` API**:
|
||
```
|
||
python ./streamchat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --question QUESTION
|
||
```
|
||
|
||
**Chat using `chat()` API**:
|
||
```
|
||
python ./streamchat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --question QUESTION --disable-stream
|
||
```
|
||
|
||
Arguments info:
|
||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the ChatGLM2 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/chatglm2-6b'`.
|
||
- `--question QUESTION`: argument defining the question to ask. It is default to be `"晚上睡不着应该怎么办"`.
|
||
- `--disable-stream`: argument defining whether to stream chat. If include `--disable-stream` when running the script, the stream chat is disabled and `chat()` API is used.
|