148 lines
		
	
	
	
		
			6.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			148 lines
		
	
	
	
		
			6.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
# This is modified from https://github.com/intel-sandbox/customer-ai-test-code/blob/main/gpt2-benchmark-for-sangfor.py
 | 
						|
#
 | 
						|
import torch
 | 
						|
import time
 | 
						|
import argparse
 | 
						|
import contextlib
 | 
						|
from transformers import GPT2ForSequenceClassification, AutoTokenizer, AutoModelForSequenceClassification, AutoConfig, Qwen2ForSequenceClassification
 | 
						|
from torch.profiler import profile, record_function, ProfilerActivity, schedule
 | 
						|
 | 
						|
 | 
						|
# Get the batch size and device
 | 
						|
parser = argparse.ArgumentParser(description='Process some integers.')
 | 
						|
parser.add_argument('--batch_size', type=int, default=1, help='an integer for the batch size')
 | 
						|
parser.add_argument('--device', type=str, default='cpu', help='an string for the device')
 | 
						|
parser.add_argument('--profile', type=bool, default=False, help='enable protch profiler for CPU/XPU')
 | 
						|
parser.add_argument('--engine', type=str, default='ipex-llm', help='an string for the device')
 | 
						|
parser.add_argument('--model_path', type=str, help='an string for the device')
 | 
						|
args = parser.parse_args()
 | 
						|
enable_profile=args.profile
 | 
						|
batch_size = args.batch_size
 | 
						|
device = args.device
 | 
						|
engine = args.engine
 | 
						|
model_path = args.model_path
 | 
						|
print(f"The batch size is: {batch_size}, device is {device}")
 | 
						|
 | 
						|
def profiler_setup(profiling=False, *args, **kwargs):
 | 
						|
    if profiling:
 | 
						|
        return torch.profiler.profile(*args, **kwargs)
 | 
						|
    else:
 | 
						|
        return contextlib.nullcontext()
 | 
						|
 | 
						|
my_schedule = schedule(
 | 
						|
    skip_first=6,
 | 
						|
    wait=1,
 | 
						|
    warmup=1,
 | 
						|
    active=1
 | 
						|
    )
 | 
						|
 | 
						|
# define a handler for outputing results
 | 
						|
def trace_handler(p):
 | 
						|
    if(device == 'xpu'):
 | 
						|
        print(p.key_averages().table(sort_by="self_xpu_time_total", row_limit=20))
 | 
						|
    print(p.key_averages().table(sort_by="cpu_time_total", row_limit=20))
 | 
						|
 | 
						|
dtype = torch.bfloat16 if device == 'cpu' else torch.float16
 | 
						|
num_labels = 5
 | 
						|
model_name = model_path
 | 
						|
model_name = model_name + "-classification"
 | 
						|
model_name_ov = model_name + "-ov"
 | 
						|
model_name_ov = model_name_ov + "-fp16"
 | 
						|
 | 
						|
if (engine == 'ipex') :
 | 
						|
    import torch
 | 
						|
    import intel_extension_for_pytorch as ipex
 | 
						|
    tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
 | 
						|
    tokenizer.padding_side = "left"
 | 
						|
    tokenizer.pad_token = tokenizer.eos_token
 | 
						|
    model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=dtype,
 | 
						|
                                                               pad_token_id=tokenizer.eos_token_id,
 | 
						|
                                                               low_cpu_mem_usage=True
 | 
						|
                                                               ).eval().to(device)
 | 
						|
elif (engine == 'ipex-llm'):
 | 
						|
    from ipex_llm.transformers import AutoModelForSequenceClassification
 | 
						|
    from transformers import AutoTokenizer
 | 
						|
    tokenizer = AutoTokenizer.from_pretrained(model_name,trust_remote_code=True)
 | 
						|
    tokenizer.padding_side = "left"
 | 
						|
    tokenizer.pad_token = tokenizer.eos_token
 | 
						|
    model = AutoModelForSequenceClassification.from_pretrained(model_name,
 | 
						|
                                                               torch_dtype=dtype,
 | 
						|
                                                               load_in_low_bit="fp16",
 | 
						|
                                                               pad_token_id=tokenizer.eos_token_id,
 | 
						|
                                                               low_cpu_mem_usage=True).to(device)
 | 
						|
    model = torch.compile(model, backend='inductor')
 | 
						|
    print(model)
 | 
						|
else:
 | 
						|
    from optimum.intel import OVModelForSequenceClassification
 | 
						|
    tokenizer = AutoTokenizer.from_pretrained(model_name_ov, trust_remote_code=True)
 | 
						|
    tokenizer.padding_side = "left"
 | 
						|
    tokenizer.pad_token = tokenizer.eos_token
 | 
						|
    model = OVModelForSequenceClassification.from_pretrained(model_name_ov, torch_dtype=dtype).to(device)
 | 
						|
 | 
						|
# Intel(R) Extension for PyTorch*
 | 
						|
if engine == 'ipex':
 | 
						|
    if device == 'cpu':
 | 
						|
        model = ipex.optimize(model, dtype=torch.bfloat16, weights_prepack=False)
 | 
						|
        model = torch.compile(model, backend='ipex')
 | 
						|
    else:    # Intel XPU
 | 
						|
        model = ipex.optimize(model, dtype=dtype, inplace=True)
 | 
						|
    model=torch.compile(model, backend="inductor")
 | 
						|
    print(model)
 | 
						|
elif engine == 'ov':
 | 
						|
    print("OV inference")
 | 
						|
 | 
						|
 | 
						|
prompt = ["this is the first prompt"]
 | 
						|
prompts = prompt * batch_size
 | 
						|
inputs = tokenizer(prompts, return_tensors="pt", padding="max_length", max_length=1024, truncation=True)
 | 
						|
 | 
						|
if engine == 'ipex' or engine == 'ipex-llm':
 | 
						|
    inputs.to(device)
 | 
						|
    elapsed_times = []
 | 
						|
    with profiler_setup(profiling=enable_profile, activities=[ProfilerActivity.CPU, ProfilerActivity.XPU],
 | 
						|
        schedule=my_schedule,
 | 
						|
        on_trace_ready=trace_handler,
 | 
						|
        record_shapes=True,
 | 
						|
        with_stack=True
 | 
						|
        ) as prof:
 | 
						|
        for i in range(10):
 | 
						|
            start_time = time.time()
 | 
						|
            with torch.inference_mode():
 | 
						|
                outputs = model(**inputs)
 | 
						|
                logits = outputs.logits
 | 
						|
            predicted_class_ids = logits.argmax(dim=1).tolist()
 | 
						|
            end_time = time.time()
 | 
						|
            elapsed_time = end_time - start_time
 | 
						|
            elapsed_times.append(elapsed_time)
 | 
						|
            if(enable_profile):
 | 
						|
                prof.step()
 | 
						|
elif engine == 'ov':
 | 
						|
    print("OV inference")
 | 
						|
    elapsed_times = []
 | 
						|
    for i in range(10):
 | 
						|
        start_time = time.time()
 | 
						|
        outputs = model(**inputs)
 | 
						|
        logits = outputs.logits
 | 
						|
        predicted_class_ids = logits.argmax(dim=1).tolist()
 | 
						|
        end_time = time.time()
 | 
						|
        elapsed_time = end_time - start_time
 | 
						|
        elapsed_times.append(elapsed_time)
 | 
						|
 | 
						|
# Skip the first two values and calculate the average of the remaining elapsed times
 | 
						|
average_elapsed_time = sum(elapsed_times[2:]) / len(elapsed_times[2:])
 | 
						|
classfication_per_second = batch_size/average_elapsed_time
 | 
						|
print(f"Average time taken (excluding the first two loops): {average_elapsed_time:.4f} seconds, Classification per seconds is {classfication_per_second:.4f}")
 |