[REFINE] graphmode code (#12540)
This commit is contained in:
parent
caf15cc5ef
commit
0b953e61ef
2 changed files with 3 additions and 87 deletions
|
|
@ -25,15 +25,11 @@ model_path = args.model_path
|
|||
|
||||
dtype=torch.bfloat16
|
||||
num_labels = 5
|
||||
|
||||
model_name=model_path
|
||||
|
||||
save_directory = model_name + "-classification"
|
||||
|
||||
# Initialize the tokenizer
|
||||
# Need padding from the left and padding to 1024
|
||||
# Initialize the tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
||||
# tokenizer.padding_side = "left"
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
tokenizer.save_pretrained(save_directory)
|
||||
|
||||
|
|
|
|||
|
|
@ -17,6 +17,7 @@
|
|||
import torch
|
||||
import time
|
||||
import argparse
|
||||
import contextlib
|
||||
from transformers import GPT2ForSequenceClassification, AutoTokenizer, AutoModelForSequenceClassification, AutoConfig, Qwen2ForSequenceClassification
|
||||
from torch.profiler import profile, record_function, ProfilerActivity, schedule
|
||||
|
||||
|
|
@ -36,12 +37,6 @@ engine = args.engine
|
|||
model_path = args.model_path
|
||||
print(f"The batch size is: {batch_size}, device is {device}")
|
||||
|
||||
|
||||
######################################################################################
|
||||
# PyTorch Profiling with IPEX
|
||||
# export IPEX_ZE_TRACING=1
|
||||
# export ZE_ENABLE_TRACING_LAYER=1
|
||||
import contextlib
|
||||
def profiler_setup(profiling=False, *args, **kwargs):
|
||||
if profiling:
|
||||
return torch.profiler.profile(*args, **kwargs)
|
||||
|
|
@ -55,21 +50,15 @@ my_schedule = schedule(
|
|||
active=1
|
||||
)
|
||||
|
||||
# also define a handler for outputing results
|
||||
# define a handler for outputing results
|
||||
def trace_handler(p):
|
||||
if(device == 'xpu'):
|
||||
print(p.key_averages().table(sort_by="self_xpu_time_total", row_limit=20))
|
||||
print(p.key_averages().table(sort_by="cpu_time_total", row_limit=20))
|
||||
# p.export_chrome_trace("./trace_" + str(p.step_num) + ".json")
|
||||
#######################################################################################
|
||||
|
||||
|
||||
|
||||
dtype = torch.bfloat16 if device == 'cpu' else torch.float16
|
||||
num_labels = 5
|
||||
|
||||
model_name = model_path
|
||||
|
||||
model_name = model_name + "-classification"
|
||||
model_name_ov = model_name + "-ov"
|
||||
model_name_ov = model_name_ov + "-fp16"
|
||||
|
|
@ -77,11 +66,9 @@ model_name_ov = model_name_ov + "-fp16"
|
|||
if (engine == 'ipex') :
|
||||
import torch
|
||||
import intel_extension_for_pytorch as ipex
|
||||
# Need padding from the left and padding to 1024
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
||||
tokenizer.padding_side = "left"
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=dtype,
|
||||
pad_token_id=tokenizer.eos_token_id,
|
||||
low_cpu_mem_usage=True
|
||||
|
|
@ -106,122 +93,55 @@ else:
|
|||
tokenizer.pad_token = tokenizer.eos_token
|
||||
model = OVModelForSequenceClassification.from_pretrained(model_name_ov, torch_dtype=dtype).to(device)
|
||||
|
||||
|
||||
|
||||
# Intel(R) Extension for PyTorch*
|
||||
if engine == 'ipex':
|
||||
if device == 'cpu':
|
||||
# model = ipex.llm.optimize(model, dtype=dtype, inplace=True, deployment_mode=True)
|
||||
# ############## TorchDynamo ###############
|
||||
model = ipex.optimize(model, dtype=torch.bfloat16, weights_prepack=False)
|
||||
model = torch.compile(model, backend='ipex')
|
||||
# ##########################################
|
||||
else: # Intel XPU
|
||||
#model = ipex.llm.optimize(model, dtype=dtype, device="xpu", inplace=True)
|
||||
model = ipex.optimize(model, dtype=dtype, inplace=True)
|
||||
|
||||
model=torch.compile(model, backend="inductor")
|
||||
print(model)
|
||||
|
||||
# # #######calulate the total num of parameters########
|
||||
# def model_size(model):
|
||||
# return sum(t.numel() for t in model.parameters())
|
||||
# print(f"GPT2 size: {model_size(model)/1000**2:.1f}M parameters")
|
||||
# # # #######print model information ###################
|
||||
# print(model)
|
||||
|
||||
# ########Enable the BetterTransformer ###################
|
||||
# only Better Transformer only support GPT2, not support Qwen2
|
||||
# model = BetterTransformer.transform(model)
|
||||
#elif engine == 'ipex-llm':
|
||||
# model = ipex.optimize(model, dtype=dtype, inplace=True)
|
||||
# model=torch.compile(model) #backend="inductor")
|
||||
elif engine == 'ov':
|
||||
print("OV inference")
|
||||
|
||||
|
||||
prompt = ["this is the first prompt"]
|
||||
prompts = prompt * batch_size
|
||||
#print(prompts)
|
||||
|
||||
# Tokenize the batch of prompts
|
||||
inputs = tokenizer(prompts, return_tensors="pt", padding="max_length", max_length=1024, truncation=True)
|
||||
# print(inputs)
|
||||
|
||||
if engine == 'ipex' or engine == 'ipex-llm':
|
||||
#ipex need move the inputs to device, but OV doesn't need
|
||||
inputs.to(device)
|
||||
|
||||
# Initialize an empty list to store elapsed times
|
||||
elapsed_times = []
|
||||
|
||||
# Loop for batch processing 10 times and calculate the time for every loop
|
||||
with profiler_setup(profiling=enable_profile, activities=[ProfilerActivity.CPU, ProfilerActivity.XPU],
|
||||
schedule=my_schedule,
|
||||
on_trace_ready=trace_handler,
|
||||
# on_trace_ready=torch.profiler.tensorboard_trace_handler('./log/gpt2'),
|
||||
record_shapes=True,
|
||||
with_stack=True
|
||||
) as prof:
|
||||
|
||||
for i in range(10):
|
||||
start_time = time.time()
|
||||
|
||||
# Perform inference
|
||||
with torch.inference_mode():
|
||||
# logits = model(**inputs).logits
|
||||
outputs = model(**inputs)
|
||||
logits = outputs.logits
|
||||
|
||||
# Get the predicted class for each input in the batch
|
||||
predicted_class_ids = logits.argmax(dim=1).tolist()
|
||||
|
||||
end_time = time.time()
|
||||
elapsed_time = end_time - start_time
|
||||
|
||||
# Save the elapsed time in the list
|
||||
elapsed_times.append(elapsed_time)
|
||||
|
||||
if(enable_profile):
|
||||
prof.step()
|
||||
|
||||
# print(outputs)
|
||||
# print(type(outputs))
|
||||
# print("logits.shape is " + str(logits.shape))
|
||||
# print(logits)
|
||||
|
||||
# print(predicted_class_ids)
|
||||
|
||||
elif engine == 'ov':
|
||||
print("OV inference")
|
||||
# Initialize an empty list to store elapsed times
|
||||
elapsed_times = []
|
||||
|
||||
# Loop for batch processing 10 times and calculate the time for every loop
|
||||
for i in range(10):
|
||||
start_time = time.time()
|
||||
|
||||
outputs = model(**inputs)
|
||||
logits = outputs.logits
|
||||
|
||||
# Get the predicted class for each input in the batch
|
||||
predicted_class_ids = logits.argmax(dim=1).tolist()
|
||||
|
||||
end_time = time.time()
|
||||
elapsed_time = end_time - start_time
|
||||
|
||||
# Save the elapsed time in the list
|
||||
elapsed_times.append(elapsed_time)
|
||||
|
||||
# print(outputs)
|
||||
# print(type(outputs))
|
||||
# print("logits.shape is " + str(logits.shape))
|
||||
# print(logits)
|
||||
|
||||
# print(predictions)
|
||||
#print(predicted_class_ids)
|
||||
|
||||
|
||||
# Skip the first two values and calculate the average of the remaining elapsed times
|
||||
average_elapsed_time = sum(elapsed_times[2:]) / len(elapsed_times[2:])
|
||||
classfication_per_second = batch_size/average_elapsed_time
|
||||
|
|
|
|||
Loading…
Reference in a new issue