[REFINE] graphmode code (#12540)

This commit is contained in:
Jun Wang 2024-12-16 09:17:01 +08:00 committed by GitHub
parent caf15cc5ef
commit 0b953e61ef
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 3 additions and 87 deletions

View file

@ -25,15 +25,11 @@ model_path = args.model_path
dtype=torch.bfloat16
num_labels = 5
model_name=model_path
save_directory = model_name + "-classification"
# Initialize the tokenizer
# Need padding from the left and padding to 1024
# Initialize the tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# tokenizer.padding_side = "left"
tokenizer.pad_token = tokenizer.eos_token
tokenizer.save_pretrained(save_directory)

View file

@ -17,6 +17,7 @@
import torch
import time
import argparse
import contextlib
from transformers import GPT2ForSequenceClassification, AutoTokenizer, AutoModelForSequenceClassification, AutoConfig, Qwen2ForSequenceClassification
from torch.profiler import profile, record_function, ProfilerActivity, schedule
@ -36,12 +37,6 @@ engine = args.engine
model_path = args.model_path
print(f"The batch size is: {batch_size}, device is {device}")
######################################################################################
# PyTorch Profiling with IPEX
# export IPEX_ZE_TRACING=1
# export ZE_ENABLE_TRACING_LAYER=1
import contextlib
def profiler_setup(profiling=False, *args, **kwargs):
if profiling:
return torch.profiler.profile(*args, **kwargs)
@ -55,21 +50,15 @@ my_schedule = schedule(
active=1
)
# also define a handler for outputing results
# define a handler for outputing results
def trace_handler(p):
if(device == 'xpu'):
print(p.key_averages().table(sort_by="self_xpu_time_total", row_limit=20))
print(p.key_averages().table(sort_by="cpu_time_total", row_limit=20))
# p.export_chrome_trace("./trace_" + str(p.step_num) + ".json")
#######################################################################################
dtype = torch.bfloat16 if device == 'cpu' else torch.float16
num_labels = 5
model_name = model_path
model_name = model_name + "-classification"
model_name_ov = model_name + "-ov"
model_name_ov = model_name_ov + "-fp16"
@ -77,11 +66,9 @@ model_name_ov = model_name_ov + "-fp16"
if (engine == 'ipex') :
import torch
import intel_extension_for_pytorch as ipex
# Need padding from the left and padding to 1024
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.padding_side = "left"
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=dtype,
pad_token_id=tokenizer.eos_token_id,
low_cpu_mem_usage=True
@ -106,122 +93,55 @@ else:
tokenizer.pad_token = tokenizer.eos_token
model = OVModelForSequenceClassification.from_pretrained(model_name_ov, torch_dtype=dtype).to(device)
# Intel(R) Extension for PyTorch*
if engine == 'ipex':
if device == 'cpu':
# model = ipex.llm.optimize(model, dtype=dtype, inplace=True, deployment_mode=True)
# ############## TorchDynamo ###############
model = ipex.optimize(model, dtype=torch.bfloat16, weights_prepack=False)
model = torch.compile(model, backend='ipex')
# ##########################################
else: # Intel XPU
#model = ipex.llm.optimize(model, dtype=dtype, device="xpu", inplace=True)
model = ipex.optimize(model, dtype=dtype, inplace=True)
model=torch.compile(model, backend="inductor")
print(model)
# # #######calulate the total num of parameters########
# def model_size(model):
# return sum(t.numel() for t in model.parameters())
# print(f"GPT2 size: {model_size(model)/1000**2:.1f}M parameters")
# # # #######print model information ###################
# print(model)
# ########Enable the BetterTransformer ###################
# only Better Transformer only support GPT2, not support Qwen2
# model = BetterTransformer.transform(model)
#elif engine == 'ipex-llm':
# model = ipex.optimize(model, dtype=dtype, inplace=True)
# model=torch.compile(model) #backend="inductor")
elif engine == 'ov':
print("OV inference")
prompt = ["this is the first prompt"]
prompts = prompt * batch_size
#print(prompts)
# Tokenize the batch of prompts
inputs = tokenizer(prompts, return_tensors="pt", padding="max_length", max_length=1024, truncation=True)
# print(inputs)
if engine == 'ipex' or engine == 'ipex-llm':
#ipex need move the inputs to device, but OV doesn't need
inputs.to(device)
# Initialize an empty list to store elapsed times
elapsed_times = []
# Loop for batch processing 10 times and calculate the time for every loop
with profiler_setup(profiling=enable_profile, activities=[ProfilerActivity.CPU, ProfilerActivity.XPU],
schedule=my_schedule,
on_trace_ready=trace_handler,
# on_trace_ready=torch.profiler.tensorboard_trace_handler('./log/gpt2'),
record_shapes=True,
with_stack=True
) as prof:
for i in range(10):
start_time = time.time()
# Perform inference
with torch.inference_mode():
# logits = model(**inputs).logits
outputs = model(**inputs)
logits = outputs.logits
# Get the predicted class for each input in the batch
predicted_class_ids = logits.argmax(dim=1).tolist()
end_time = time.time()
elapsed_time = end_time - start_time
# Save the elapsed time in the list
elapsed_times.append(elapsed_time)
if(enable_profile):
prof.step()
# print(outputs)
# print(type(outputs))
# print("logits.shape is " + str(logits.shape))
# print(logits)
# print(predicted_class_ids)
elif engine == 'ov':
print("OV inference")
# Initialize an empty list to store elapsed times
elapsed_times = []
# Loop for batch processing 10 times and calculate the time for every loop
for i in range(10):
start_time = time.time()
outputs = model(**inputs)
logits = outputs.logits
# Get the predicted class for each input in the batch
predicted_class_ids = logits.argmax(dim=1).tolist()
end_time = time.time()
elapsed_time = end_time - start_time
# Save the elapsed time in the list
elapsed_times.append(elapsed_time)
# print(outputs)
# print(type(outputs))
# print("logits.shape is " + str(logits.shape))
# print(logits)
# print(predictions)
#print(predicted_class_ids)
# Skip the first two values and calculate the average of the remaining elapsed times
average_elapsed_time = sum(elapsed_times[2:]) / len(elapsed_times[2:])
classfication_per_second = batch_size/average_elapsed_time