* axolotl_quickstart.md * benchmark_quickstart.md * bigdl_llm_migration.md * chatchat_quickstart.md * continue_quickstart.md * deepspeed_autotp_fastapi_quickstart.md * dify_quickstart.md * fastchat_quickstart.md * adjust tab style * fix link * fix link * add video preview * Small fixes * Small fix --------- Co-authored-by: Yuwen Hu <yuwen.hu@intel.com>
305 lines
11 KiB
Markdown
305 lines
11 KiB
Markdown
# Finetune LLM with Axolotl on Intel GPU
|
|
|
|
[Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) is a popular tool designed to streamline the fine-tuning of various AI models, offering support for multiple configurations and architectures. You can now use [`ipex-llm`](https://github.com/intel-analytics/ipex-llm) as an accelerated backend for `Axolotl` running on Intel **GPU** *(e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max)*.
|
|
|
|
See the demo of finetuning LLaMA2-7B on Intel Arc GPU below.
|
|
|
|
[](https://llm-assets.readthedocs.io/en/latest/_images/axolotl-qlora-linux-arc.mp4)
|
|
|
|
## Quickstart
|
|
|
|
### 0. Prerequisites
|
|
|
|
IPEX-LLM's support for [Axolotl v0.4.0](https://github.com/OpenAccess-AI-Collective/axolotl/tree/v0.4.0) is only available for Linux system. We recommend Ubuntu 20.04 or later (Ubuntu 22.04 is preferred).
|
|
|
|
Visit the [Install IPEX-LLM on Linux with Intel GPU](./install_linux_gpu.md), follow [Install Intel GPU Driver](./install_linux_gpu.md#install-gpu-driver) and [Install oneAPI](./install_linux_gpu.md#install-oneapi) to install GPU driver and Intel® oneAPI Base Toolkit 2024.0.
|
|
|
|
### 1. Install IPEX-LLM for Axolotl
|
|
|
|
Create a new conda env, and install `ipex-llm[xpu]`.
|
|
|
|
```bash
|
|
conda create -n axolotl python=3.11
|
|
conda activate axolotl
|
|
# install ipex-llm
|
|
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
|
```
|
|
|
|
Install [axolotl v0.4.0](https://github.com/OpenAccess-AI-Collective/axolotl/tree/v0.4.0) from git.
|
|
|
|
```bash
|
|
# install axolotl v0.4.0
|
|
git clone https://github.com/OpenAccess-AI-Collective/axolotl/tree/v0.4.0
|
|
cd axolotl
|
|
# replace requirements.txt
|
|
remove requirements.txt
|
|
wget -O requirements.txt https://raw.githubusercontent.com/intel-analytics/ipex-llm/main/python/llm/example/GPU/LLM-Finetuning/axolotl/requirements-xpu.txt
|
|
pip install -e .
|
|
pip install transformers==4.36.0
|
|
# to avoid https://github.com/OpenAccess-AI-Collective/axolotl/issues/1544
|
|
pip install datasets==2.15.0
|
|
# prepare axolotl entrypoints
|
|
wget https://raw.githubusercontent.com/intel-analytics/ipex-llm/main/python/llm/example/GPU/LLM-Finetuning/axolotl/finetune.py
|
|
wget https://raw.githubusercontent.com/intel-analytics/ipex-llm/main/python/llm/example/GPU/LLM-Finetuning/axolotl/train.py
|
|
```
|
|
|
|
**After the installation, you should have created a conda environment, named `axolotl` for instance, for running `Axolotl` commands with IPEX-LLM.**
|
|
|
|
### 2. Example: Finetune Llama-2-7B with Axolotl
|
|
|
|
The following example will introduce finetuning [Llama-2-7B](https://huggingface.co/meta-llama/Llama-2-7b) with [alpaca_2k_test](https://huggingface.co/datasets/mhenrichsen/alpaca_2k_test) dataset using LoRA and QLoRA.
|
|
|
|
Note that you don't need to write any code in this example.
|
|
|
|
| Model | Dataset | Finetune method |
|
|
|-------|-------|-------|
|
|
| Llama-2-7B | alpaca_2k_test | LoRA (Low-Rank Adaptation) |
|
|
| Llama-2-7B | alpaca_2k_test | QLoRA (Quantized Low-Rank Adaptation) |
|
|
|
|
For more technical details, please refer to [Llama 2](https://arxiv.org/abs/2307.09288), [LoRA](https://arxiv.org/abs/2106.09685) and [QLoRA](https://arxiv.org/abs/2305.14314).
|
|
|
|
#### 2.1 Download Llama-2-7B and alpaca_2k_test
|
|
|
|
By default, Axolotl will automatically download models and datasets from Huggingface. Please ensure you have login to Huggingface.
|
|
|
|
```bash
|
|
huggingface-cli login
|
|
```
|
|
|
|
If you prefer offline models and datasets, please download [Llama-2-7B](https://huggingface.co/meta-llama/Llama-2-7b) and [alpaca_2k_test](https://huggingface.co/datasets/mhenrichsen/alpaca_2k_test). Then, set `HF_HUB_OFFLINE=1` to avoid connecting to Huggingface.
|
|
|
|
```bash
|
|
export HF_HUB_OFFLINE=1
|
|
```
|
|
|
|
#### 2.2 Set Environment Variables
|
|
|
|
> [!NOTE]
|
|
> This is a required step on for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
|
|
|
|
Configure oneAPI variables by running the following command:
|
|
|
|
```bash
|
|
source /opt/intel/oneapi/setvars.sh
|
|
```
|
|
|
|
Configure accelerate to avoid training with CPU. You can download a default `default_config.yaml` with `use_cpu: false`.
|
|
|
|
```bash
|
|
mkdir -p ~/.cache/huggingface/accelerate/
|
|
wget -O ~/.cache/huggingface/accelerate/default_config.yaml https://raw.githubusercontent.com/intel-analytics/ipex-llm/main/python/llm/example/GPU/LLM-Finetuning/axolotl/default_config.yaml
|
|
```
|
|
|
|
As an alternative, you can config accelerate based on your requirements.
|
|
|
|
```bash
|
|
accelerate config
|
|
```
|
|
|
|
Please answer `NO` in option `Do you want to run your training on CPU only (even if a GPU / Apple Silicon device is available)? [yes/NO]:`.
|
|
|
|
After finishing accelerate config, check if `use_cpu` is disabled (i.e., `use_cpu: false`) in accelerate config file (`~/.cache/huggingface/accelerate/default_config.yaml`).
|
|
|
|
#### 2.3 LoRA finetune
|
|
|
|
Prepare `lora.yml` for Axolotl LoRA finetune. You can download a template from github.
|
|
|
|
```bash
|
|
wget https://raw.githubusercontent.com/intel-analytics/ipex-llm/main/python/llm/example/GPU/LLM-Finetuning/axolotl/lora.yml
|
|
```
|
|
|
|
**If you are using the offline model and dataset in local env**, please modify the model path and dataset path in `lora.yml`. Otherwise, keep them unchanged.
|
|
|
|
```yaml
|
|
# Please change to local path if model is offline, e.g., /path/to/model/Llama-2-7b-hf
|
|
base_model: NousResearch/Llama-2-7b-hf
|
|
datasets:
|
|
# Please change to local path if dataset is offline, e.g., /path/to/dataset/alpaca_2k_test
|
|
- path: mhenrichsen/alpaca_2k_test
|
|
type: alpaca
|
|
```
|
|
|
|
Modify LoRA parameters, such as `lora_r` and `lora_alpha`, etc.
|
|
|
|
```yaml
|
|
adapter: lora
|
|
lora_model_dir:
|
|
|
|
lora_r: 32
|
|
lora_alpha: 16
|
|
lora_dropout: 0.05
|
|
lora_target_linear: true
|
|
lora_fan_in_fan_out:
|
|
```
|
|
|
|
Launch LoRA training with the following command.
|
|
|
|
```bash
|
|
accelerate launch finetune.py lora.yml
|
|
```
|
|
|
|
In Axolotl v0.4.0, you can use `train.py` instead of `-m axolotl.cli.train` or `finetune.py`.
|
|
|
|
```bash
|
|
accelerate launch train.py lora.yml
|
|
```
|
|
|
|
#### 2.4 QLoRA finetune
|
|
|
|
Prepare `lora.yml` for QLoRA finetune. You can download a template from github.
|
|
|
|
```bash
|
|
wget https://raw.githubusercontent.com/intel-analytics/ipex-llm/main/python/llm/example/GPU/LLM-Finetuning/axolotl/qlora.yml
|
|
```
|
|
|
|
**If you are using the offline model and dataset in local env**, please modify the model path and dataset path in `qlora.yml`. Otherwise, keep them unchanged.
|
|
|
|
```yaml
|
|
# Please change to local path if model is offline, e.g., /path/to/model/Llama-2-7b-hf
|
|
base_model: NousResearch/Llama-2-7b-hf
|
|
datasets:
|
|
# Please change to local path if dataset is offline, e.g., /path/to/dataset/alpaca_2k_test
|
|
- path: mhenrichsen/alpaca_2k_test
|
|
type: alpaca
|
|
```
|
|
|
|
Modify QLoRA parameters, such as `lora_r` and `lora_alpha`, etc.
|
|
|
|
```yaml
|
|
adapter: qlora
|
|
lora_model_dir:
|
|
|
|
lora_r: 32
|
|
lora_alpha: 16
|
|
lora_dropout: 0.05
|
|
lora_target_modules:
|
|
lora_target_linear: true
|
|
lora_fan_in_fan_out:
|
|
```
|
|
|
|
Launch LoRA training with the following command.
|
|
|
|
```bash
|
|
accelerate launch finetune.py qlora.yml
|
|
```
|
|
|
|
In Axolotl v0.4.0, you can use `train.py` instead of `-m axolotl.cli.train` or `finetune.py`.
|
|
|
|
```bash
|
|
accelerate launch train.py qlora.yml
|
|
```
|
|
|
|
### 3. Finetune Llama-3-8B (Experimental)
|
|
|
|
Warning: this section will install axolotl main ([796a085](https://github.com/OpenAccess-AI-Collective/axolotl/tree/796a085b2f688f4a5efe249d95f53ff6833bf009)) for new features, e.g., Llama-3-8B.
|
|
|
|
#### 3.1 Install Axolotl main in conda
|
|
|
|
Axolotl main has lots of new dependencies. Please setup a new conda env for this version.
|
|
|
|
```bash
|
|
conda create -n llm python=3.11
|
|
conda activate llm
|
|
# install axolotl main
|
|
git clone https://github.com/OpenAccess-AI-Collective/axolotl
|
|
cd axolotl && git checkout 796a085
|
|
pip install -e .
|
|
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
|
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
|
# install transformers etc
|
|
# to avoid https://github.com/OpenAccess-AI-Collective/axolotl/issues/1544
|
|
pip install datasets==2.15.0
|
|
pip install transformers==4.37.0
|
|
```
|
|
|
|
Config accelerate and oneAPIs, according to [Set Environment Variables](#22-set-environment-variables).
|
|
|
|
#### 3.2 Alpaca QLoRA
|
|
|
|
Based on [axolotl Llama-3 QLoRA example](https://github.com/OpenAccess-AI-Collective/axolotl/blob/main/examples/llama-3/qlora.yml).
|
|
|
|
Prepare `llama3-qlora.yml` for QLoRA finetune. You can download a template from github.
|
|
|
|
```bash
|
|
wget https://raw.githubusercontent.com/intel-analytics/ipex-llm/main/python/llm/example/GPU/LLM-Finetuning/axolotl/llama3-qlora.yml
|
|
```
|
|
|
|
**If you are using the offline model and dataset in local env**, please modify the model path and dataset path in `llama3-qlora.yml`. Otherwise, keep them unchanged.
|
|
|
|
```yaml
|
|
# Please change to local path if model is offline, e.g., /path/to/model/Meta-Llama-3-8B
|
|
base_model: meta-llama/Meta-Llama-3-8B
|
|
datasets:
|
|
# Please change to local path if dataset is offline, e.g., /path/to/dataset/alpaca_2k_test
|
|
- path: aaditya/alpaca_subset_1
|
|
type: alpaca
|
|
```
|
|
|
|
Modify QLoRA parameters, such as `lora_r` and `lora_alpha`, etc.
|
|
|
|
```yaml
|
|
adapter: qlora
|
|
lora_model_dir:
|
|
|
|
sequence_len: 256
|
|
sample_packing: true
|
|
pad_to_sequence_len: true
|
|
|
|
lora_r: 32
|
|
lora_alpha: 16
|
|
lora_dropout: 0.05
|
|
lora_target_modules:
|
|
lora_target_linear: true
|
|
lora_fan_in_fan_out:
|
|
```
|
|
|
|
```bash
|
|
accelerate launch finetune.py llama3-qlora.yml
|
|
```
|
|
|
|
You can also use `train.py` instead of `-m axolotl.cli.train` or `finetune.py`.
|
|
|
|
```bash
|
|
accelerate launch train.py llama3-qlora.yml
|
|
```
|
|
|
|
Expected output
|
|
|
|
```bash
|
|
{'loss': 0.237, 'learning_rate': 1.2254711850265387e-06, 'epoch': 3.77}
|
|
{'loss': 0.6068, 'learning_rate': 1.1692453482951115e-06, 'epoch': 3.77}
|
|
{'loss': 0.2926, 'learning_rate': 1.1143322458989303e-06, 'epoch': 3.78}
|
|
{'loss': 0.2475, 'learning_rate': 1.0607326072295087e-06, 'epoch': 3.78}
|
|
{'loss': 0.1531, 'learning_rate': 1.008447144232094e-06, 'epoch': 3.79}
|
|
{'loss': 0.1799, 'learning_rate': 9.57476551396197e-07, 'epoch': 3.79}
|
|
{'loss': 0.2724, 'learning_rate': 9.078215057463868e-07, 'epoch': 3.79}
|
|
{'loss': 0.2534, 'learning_rate': 8.594826668332445e-07, 'epoch': 3.8}
|
|
{'loss': 0.3388, 'learning_rate': 8.124606767246579e-07, 'epoch': 3.8}
|
|
{'loss': 0.3867, 'learning_rate': 7.667561599972505e-07, 'epoch': 3.81}
|
|
{'loss': 0.2108, 'learning_rate': 7.223697237281668e-07, 'epoch': 3.81}
|
|
{'loss': 0.0792, 'learning_rate': 6.793019574868775e-07, 'epoch': 3.82}
|
|
```
|
|
|
|
## Troubleshooting
|
|
|
|
### TypeError: PosixPath
|
|
|
|
Error message: `TypeError: argument of type 'PosixPath' is not iterable`
|
|
|
|
This issue is related to [axolotl #1544](https://github.com/OpenAccess-AI-Collective/axolotl/issues/1544). It can be fixed by downgrading datasets to 2.15.0.
|
|
|
|
```bash
|
|
pip install datasets==2.15.0
|
|
```
|
|
|
|
### RuntimeError: out of device memory
|
|
|
|
Error message: `RuntimeError: Allocation is out of device memory on current platform.`
|
|
|
|
This issue is caused by running out of GPU memory. Please reduce `lora_r` or `micro_batch_size` in `qlora.yml` or `lora.yml`, or reduce data using in training.
|
|
|
|
### OSError: libmkl_intel_lp64.so.2
|
|
|
|
Error message: `OSError: libmkl_intel_lp64.so.2: cannot open shared object file: No such file or directory`
|
|
|
|
oneAPI environment is not correctly set. Please refer to [Set Environment Variables](#22-set-environment-variables).
|