* add config and default value * add config in taml * remove lookahead and max_matching_ngram_size in config * remove streaming and use_fp16_torch_dtype in test yaml * update task in readme * update commit of task
87 lines
4.2 KiB
Markdown
87 lines
4.2 KiB
Markdown
# All in One Benchmark Test
|
|
|
|
All in one benchmark test allows users to test all the benchmarks and record them in a result CSV. Users can provide models and related information in `config.yaml`.
|
|
|
|
Before running, make sure to have [ipex-llm](../../../../../README.md) installed.
|
|
|
|
## Dependencies
|
|
|
|
```bash
|
|
pip install omegaconf
|
|
pip install pandas
|
|
```
|
|
|
|
Install gperftools to use libtcmalloc.so for MAX GPU to get better performance:
|
|
|
|
```bash
|
|
conda install -c conda-forge -y gperftools=2.10
|
|
```
|
|
|
|
## Config
|
|
|
|
Config YAML file has following format
|
|
|
|
```yaml
|
|
repo_id:
|
|
# - 'THUDM/chatglm2-6b'
|
|
- 'meta-llama/Llama-2-7b-chat-hf'
|
|
# - 'liuhaotian/llava-v1.5-7b' # requires a LLAVA_REPO_DIR env variables pointing to the llava dir; added only for gpu win related test_api now
|
|
local_model_hub: 'path to your local model hub'
|
|
warm_up: 1 # must set >=2 when run "pipeline_parallel_gpu" test_api
|
|
num_trials: 3
|
|
num_beams: 1 # default to greedy search
|
|
low_bit: 'sym_int4' # default to use 'sym_int4' (i.e. symmetric int4)
|
|
batch_size: 1 # default to 1
|
|
in_out_pairs:
|
|
- '32-32'
|
|
- '1024-128'
|
|
test_api:
|
|
- "transformer_int4_fp16_gpu" # on Intel GPU, transformer-like API, (qtype=int4), (dtype=fp16)
|
|
# - "transformer_int4_fp16_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), (dtype=fp16)
|
|
# - "transformer_int4_gpu" # on Intel GPU, transformer-like API, (qtype=int4), (dtype=fp32)
|
|
# - "transformer_int4_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), (dtype=fp32)
|
|
# - "transformer_int4_loadlowbit_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), use load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
|
|
# - "bigdl_fp16_gpu" # on Intel GPU, use ipex-llm transformers API, (dtype=fp16), (qtype=fp16)
|
|
# - "optimize_model_gpu" # on Intel GPU, can optimize any pytorch models include transformer model
|
|
# - "deepspeed_optimize_model_gpu" # on Intel GPU, deepspeed autotp inference
|
|
# - "pipeline_parallel_gpu" # on Intel GPU, pipeline parallel inference
|
|
# - "speculative_gpu" # on Intel GPU, inference with self-speculative decoding
|
|
# - "transformer_int4" # on Intel CPU, transformer-like API, (qtype=int4)
|
|
# - "native_int4" # on Intel CPU
|
|
# - "optimize_model" # on Intel CPU, can optimize any pytorch models include transformer model
|
|
# - "pytorch_autocast_bf16" # on Intel CPU
|
|
# - "transformer_autocast_bf16" # on Intel CPU
|
|
# - "bigdl_ipex_bf16" # on Intel CPU, (qtype=bf16)
|
|
# - "bigdl_ipex_int4" # on Intel CPU, (qtype=int4)
|
|
# - "bigdl_ipex_int8" # on Intel CPU, (qtype=int8)
|
|
# - "speculative_cpu" # on Intel CPU, inference with self-speculative decoding
|
|
# - "deepspeed_transformer_int4_cpu" # on Intel CPU, deepspeed autotp inference
|
|
cpu_embedding: False # whether put embedding to CPU
|
|
streaming: False # whether output in streaming way (only available now for gpu win related test_api)
|
|
use_fp16_torch_dtype: True # whether use fp16 for non-linear layer (only available now for "pipeline_parallel_gpu" test_api)
|
|
task: 'continuation' # task can be 'continuation', 'QA' and 'summarize'
|
|
|
|
```
|
|
|
|
## (Optional) Save model in low bit
|
|
If you choose the `transformer_int4_loadlowbit_gpu_win` test API, you will need to save the model in low bit first.
|
|
|
|
Run `python save.py` will save all models declared in `repo_id` list into low bit models under `local_model_hub` folder.
|
|
|
|
## Run
|
|
|
|
run `python run.py`, this will output results to `results.csv`.
|
|
|
|
For SPR performance, run `bash run-spr.sh`.
|
|
|
|
> **Note**
|
|
>
|
|
> The value of `OMP_NUM_THREADS` should be the same as the cpu cores specified by `numactl -C`.
|
|
|
|
> **Note**
|
|
>
|
|
> Please install torch nightly version to avoid `Illegal instruction (core dumped)` issue, you can follow the following command to install: `pip install --pre --upgrade torch --index-url https://download.pytorch.org/whl/nightly/cpu`
|
|
|
|
For ARC performance, run `bash run-arc.sh`.
|
|
|
|
For MAX GPU performance, run `bash run-max-gpu.sh`.
|