* Remove pip install command in windows installation guide * fix chatglm3 installation guide * Fix gemma cpu example * Apply on other examples * fix
143 lines
4.8 KiB
Markdown
143 lines
4.8 KiB
Markdown
# Run ModelScope Model
|
||
|
||
In this directory, you will find example on how you could apply IPEX-LLM INT4 optimizations on ModelScope models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [ZhipuAI/chatglm3-6b](https://modelscope.cn/models/ZhipuAI/chatglm3-6b/summary) as a reference ModelScope model.
|
||
|
||
## 0. Requirements
|
||
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
|
||
|
||
## Example: Predict Tokens using `generate()` API
|
||
In the example [generate.py](./generate.py), we show a basic use case for a ChatGLM3 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
|
||
### 1. Install
|
||
#### 1.1 Installation on Linux
|
||
We suggest using conda to manage environment:
|
||
```bash
|
||
conda create -n llm python=3.11
|
||
conda activate llm
|
||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||
# Refer to https://github.com/modelscope/modelscope/issues/765, please make sure you are using 1.11.0 version
|
||
pip install modelscope==1.11.0
|
||
```
|
||
|
||
#### 1.2 Installation on Windows
|
||
We suggest using conda to manage environment:
|
||
```bash
|
||
conda create -n llm python=3.11 libuv
|
||
conda activate llm
|
||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||
pip install modelscope
|
||
```
|
||
|
||
### 2. Configures OneAPI environment variables for Linux
|
||
|
||
> [!NOTE]
|
||
> Skip this step if you are running on Windows.
|
||
|
||
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
|
||
|
||
```bash
|
||
source /opt/intel/oneapi/setvars.sh
|
||
```
|
||
|
||
### 3. Runtime Configurations
|
||
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
|
||
#### 3.1 Configurations for Linux
|
||
<details>
|
||
|
||
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
|
||
|
||
```bash
|
||
export USE_XETLA=OFF
|
||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||
export SYCL_CACHE_PERSISTENT=1
|
||
```
|
||
|
||
</details>
|
||
|
||
<details>
|
||
|
||
<summary>For Intel Data Center GPU Max Series</summary>
|
||
|
||
```bash
|
||
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
|
||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||
export SYCL_CACHE_PERSISTENT=1
|
||
export ENABLE_SDP_FUSION=1
|
||
```
|
||
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
|
||
</details>
|
||
|
||
<details>
|
||
|
||
<summary>For Intel iGPU</summary>
|
||
|
||
```bash
|
||
export SYCL_CACHE_PERSISTENT=1
|
||
export BIGDL_LLM_XMX_DISABLED=1
|
||
```
|
||
|
||
</details>
|
||
|
||
#### 3.2 Configurations for Windows
|
||
<details>
|
||
|
||
<summary>For Intel iGPU</summary>
|
||
|
||
```cmd
|
||
set SYCL_CACHE_PERSISTENT=1
|
||
set BIGDL_LLM_XMX_DISABLED=1
|
||
```
|
||
|
||
</details>
|
||
|
||
<details>
|
||
|
||
<summary>For Intel Arc™ A-Series Graphics</summary>
|
||
|
||
```cmd
|
||
set SYCL_CACHE_PERSISTENT=1
|
||
```
|
||
|
||
</details>
|
||
|
||
> [!NOTE]
|
||
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
|
||
|
||
### 4. Running examples
|
||
|
||
```
|
||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
|
||
```
|
||
|
||
Arguments info:
|
||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the ModelScope repo id for the ModelScope ChatGLM3 model to be downloaded, or the path to the ModelScope checkpoint folder. It is default to be `'ZhipuAI/chatglm3-6b'`.
|
||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
|
||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||
|
||
#### Sample Output
|
||
#### [ZhipuAI/chatglm3-6b](https://modelscope.cn/models/ZhipuAI/chatglm3-6b/summary)
|
||
```log
|
||
Inference time: xxxx s
|
||
-------------------- Prompt --------------------
|
||
<|user|>
|
||
AI是什么?
|
||
<|assistant|>
|
||
-------------------- Output --------------------
|
||
[gMASK]sop <|user|>
|
||
AI是什么?
|
||
<|assistant|> AI是人工智能(Artificial Intelligence)的缩写,指的是通过计算机程序和算法模拟人类智能的技术。AI可以帮助我们解决各种问题,例如语音
|
||
```
|
||
|
||
```log
|
||
Inference time: xxxx s
|
||
-------------------- Prompt --------------------
|
||
<|user|>
|
||
What is AI?
|
||
<|assistant|>
|
||
-------------------- Output --------------------
|
||
[gMASK]sop <|user|>
|
||
What is AI?
|
||
<|assistant|>
|
||
AI stands for Artificial Intelligence. It refers to the development of computer systems that can perform tasks that would normally require human intelligence, such as recognizing speech or making
|
||
```
|