* add-openvino-to-all-in-one * update on openvino API * Update save_openvino.py * Update save_openvino.py * Update save_openvino.py * update on run.py and save_openvino * update references * Create openvino-requirements.txt * fix on comments * Small updates * Small fix * Fix --------- Co-authored-by: Yuwen Hu <yuwen.hu@intel.com>
		
			
				
	
	
		
			107 lines
		
	
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			107 lines
		
	
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
# Some parts of this file is adapted from
 | 
						|
# https://github.com/openvino-dev-samples/Qwen2.openvino/blob/main/convert.py
 | 
						|
 | 
						|
import os
 | 
						|
from pathlib import Path
 | 
						|
import warnings
 | 
						|
 | 
						|
from transformers import AutoTokenizer, LlamaTokenizer
 | 
						|
from optimum.intel import OVWeightQuantizationConfig
 | 
						|
from optimum.intel.openvino import OVModelForCausalLM
 | 
						|
 | 
						|
from run import LLAMA_IDS, get_model_path
 | 
						|
 | 
						|
current_dir = os.path.dirname(os.path.realpath(__file__))
 | 
						|
 | 
						|
def save_model_to_openvino(repo_id,
 | 
						|
                           local_model_hub,
 | 
						|
                           low_bit,
 | 
						|
                           group_size,
 | 
						|
                           ):
 | 
						|
    model_path = get_model_path(repo_id, local_model_hub)
 | 
						|
 | 
						|
    ir_repo_id = (repo_id.split(
 | 
						|
        "/")[1] + '-ov-' + low_bit + '-' +str(group_size))
 | 
						|
 | 
						|
    if local_model_hub:
 | 
						|
        repo_model_name = repo_id.split(
 | 
						|
        "/")[1] + '-ov-' + low_bit + '-' +str(group_size)
 | 
						|
        ir_model_path = local_model_hub + os.path.sep + repo_model_name
 | 
						|
        ir_model_path = Path(ir_model_path)
 | 
						|
    else:
 | 
						|
        ir_model_path = Path(ir_repo_id)
 | 
						|
 | 
						|
    if not ir_model_path.exists():
 | 
						|
        os.mkdir(ir_model_path)
 | 
						|
 | 
						|
    compression_configs = {
 | 
						|
        "sym": True,
 | 
						|
        "group_size": group_size,
 | 
						|
        "ratio": 1.0,
 | 
						|
    }
 | 
						|
 | 
						|
    print(">> Exporting IR")
 | 
						|
    if low_bit == "sym_int4":
 | 
						|
        compression_configs['sym'] = True
 | 
						|
        ov_model = OVModelForCausalLM.from_pretrained(model_path, export=True, 
 | 
						|
                                                      trust_remote_code=True,
 | 
						|
                                                      compile=False, quantization_config=OVWeightQuantizationConfig(
 | 
						|
                                                      bits=4, **compression_configs)).eval()
 | 
						|
    elif low_bit == "asym_int4":
 | 
						|
        compression_configs['sym'] = False
 | 
						|
        ov_model = OVModelForCausalLM.from_pretrained(model_path, export=True, 
 | 
						|
                                                      trust_remote_code=True,
 | 
						|
                                                      compile=False, quantization_config=OVWeightQuantizationConfig(
 | 
						|
                                                      bits=4, **compression_configs)).eval()
 | 
						|
 | 
						|
    print(">> Saving IR")
 | 
						|
    ov_model.save_pretrained(ir_model_path)
 | 
						|
 | 
						|
    print(">> Exporting tokenizer")
 | 
						|
    if repo_id in LLAMA_IDS:
 | 
						|
        tokenizer = LlamaTokenizer.from_pretrained(model_path,
 | 
						|
                                                   trust_remote_code=True)
 | 
						|
    else:
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
						|
                                                  trust_remote_code=True)
 | 
						|
    tokenizer.save_pretrained(ir_model_path)
 | 
						|
 | 
						|
    print(">> Exporting IR tokenizer")
 | 
						|
    from optimum.exporters.openvino.convert import export_tokenizer
 | 
						|
    export_tokenizer(tokenizer, ir_model_path)
 | 
						|
    print(f">> Finished saving OpenVINO IR for {repo_id} in {low_bit} with group size {group_size}")
 | 
						|
    del ov_model
 | 
						|
    del model_path
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    supported_precision = ["sym_int4", "asym_int4"]
 | 
						|
 | 
						|
    from omegaconf import OmegaConf
 | 
						|
    conf = OmegaConf.load(f'{current_dir}/config.yaml')
 | 
						|
 | 
						|
    if conf['low_bit'] in supported_precision:
 | 
						|
        for model in conf.repo_id:
 | 
						|
            save_model_to_openvino(repo_id=model,
 | 
						|
                                   local_model_hub=conf['local_model_hub'],
 | 
						|
                                   low_bit=conf['low_bit'],
 | 
						|
                                   group_size=conf['group_size'],)
 | 
						|
    else:
 | 
						|
        warnings.warn(f"low_bit {conf['low_bit']} is not supported "
 | 
						|
                      "in all-in-one benchmark for OpenVINO tests. Only "
 | 
						|
                      'sym_int4 and asym_int4 is currently supported for "transformers_openvino" test api.')
 |