Add OpenVINO performance tests to all-in-one benchmark (#12238)

* add-openvino-to-all-in-one

* update on openvino API

* Update save_openvino.py

* Update save_openvino.py

* Update save_openvino.py

* update on run.py and save_openvino

* update references

* Create openvino-requirements.txt

* fix on comments

* Small updates

* Small fix

* Fix

---------

Co-authored-by: Yuwen Hu <yuwen.hu@intel.com>
This commit is contained in:
Zijie Li 2024-10-25 01:53:53 -04:00 committed by GitHub
parent ae57e23e4f
commit f7f62a3fef
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 209 additions and 8 deletions

View file

@ -60,23 +60,38 @@ test_api:
# - "speculative_cpu" # on Intel CPU, inference with self-speculative decoding
# - "deepspeed_transformer_int4_cpu" # on Intel CPU, deepspeed autotp inference
# - "transformers_int4_npu_win" # on Intel NPU for Windows, transformer-like API, (qtype=int4)
# - "transformers_openvino" # on Intel GPU, use OpenVINO. Please make sure you have used the save_openvino.py to save the converted OpenVINO model
cpu_embedding: False # whether put embedding to CPU
streaming: False # whether output in streaming way (only available now for gpu win related test_api)
use_fp16_torch_dtype: True # whether use fp16 for non-linear layer (only available now for "pipeline_parallel_gpu" test_api)
task: 'continuation' # task can be 'continuation', 'QA' and 'summarize'
group_size: 64 # group_size when converting OpenVINO model (only available or "transformers_openvino" test_api)
```
## (Optional) Save model in low bit
If you choose the `transformer_int4_loadlowbit_gpu_win` or `transformer_int4_fp16_loadlowbit_gpu_win` test API, you will need to save the model in low bit first.
Run `python save.py` will save all models declared in `repo_id` list into low bit models under `local_model_hub` folder.
Running `python save.py` will save all models declared in `repo_id` list into low bit models under `local_model_hub` folder.
## (Optional) Save model for OpenVINO
If you choose the `transformers_openvino` test API, you will need to convert the model with OpenVINO first.
Follow commands below to set up the environment for testing OpenVINO on Intel GPU, in which `requirements.txt` should be downloaded from [here](Download the requirements txt from https://github.com/openvino-dev-samples/Qwen2.openvino/blob/main/requirements.txt):
```bash
conda create -n test-ov python=3.11
pip install -r requirements.txt
pip install --pre --upgrade ipex-llm # only for IPEX-LLM BenchmarkWrapper
pip install accelerate
```
Then, running `python save_openvino.py` will save all models declared in `repo_id` list into OpenVINO models with `low_bit` precision under `local_model_hub` folder.
## Run
run `python run.py`, this will output results to `results.csv`.
For SPR performance, run `bash run-spr.sh`.
For IPEX-LLM SPR performance, run `bash run-spr.sh`.
> **Note**
>
@ -86,6 +101,6 @@ For SPR performance, run `bash run-spr.sh`.
>
> Please install torch nightly version to avoid `Illegal instruction (core dumped)` issue, you can follow the following command to install: `pip install --pre --upgrade torch --index-url https://download.pytorch.org/whl/nightly/cpu`
For ARC performance, run `bash run-arc.sh`.
For IPEX-LLM ARC performance, run `bash run-arc.sh`.
For MAX GPU performance, run `bash run-max-gpu.sh`.
For IPEX-LLM MAX GPU performance, run `bash run-max-gpu.sh`.

View file

@ -37,9 +37,11 @@ test_api:
# - "deepspeed_transformer_int4_cpu" # on Intel CPU, deepspeed autotp inference
# - "transformers_int4_npu_win" # on Intel NPU for Windows, transformer-like API, (qtype=int4)
# - "transformers_int4_loadlowbit_npu_win" # on Intel NPU for Windows, transformer-like API, (qtype=int4), use load_low_bit API. Please make sure you have used the save_npu.py to save the converted low bit model
# - "transformers_openvino" # on Intel GPU, use OpenVINO. Please make sure you have used the save_openvino.py to save the converted OpenVINO model
cpu_embedding: False # whether put embedding to CPU
streaming: False # whether output in streaming way (only available now for gpu win related test_api)
optimize_model: False # whether apply further optimization on NPU (only available now for transformers_int4_npu_win test_api)
use_fp16_torch_dtype: True # whether use fp16 for non-linear layer (only available now for "pipeline_parallel_gpu" test_api)
task: 'continuation' # task can be 'continuation', 'QA' and 'summarize'
transpose_value_cache: True # whether apply transposed v_cache optimization on NPU (only available now for transformers_int4_npu_win test_api)
transpose_value_cache: True # whether apply transposed v_cache optimization on NPU (only available now for transformers_int4_npu_win test_api)
group_size: 64 # group_size when converting OpenVINO model (only available or "transformers_openvino" test_api)

View file

@ -138,7 +138,7 @@ def preprocess_prompt(tokenizer, in_len, task):
input_ids = tokenizer.encode(input_str, return_tensors="pt")
return input_ids
def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1, low_bit='sym_int4', cpu_embedding=False, batch_size=1, streaming=False, use_fp16_torch_dtype=False, lookahead=False, task='continuation', optimize_model=False, transpose_value_cache=True):
def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1, low_bit='sym_int4', cpu_embedding=False, batch_size=1, streaming=False, use_fp16_torch_dtype=False, lookahead=False, task='continuation', optimize_model=False, transpose_value_cache=True, group_size=64):
# TODO: make a parameter
result= {}
if test_api == 'transformer_int4':
@ -193,6 +193,8 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
result = transformers_int4_npu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, optimize_model, transpose_value_cache)
elif test_api == 'transformers_int4_loadlowbit_npu_win':
result = run_transformer_int4_loadlowbit_npu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, optimize_model, transpose_value_cache)
elif test_api == 'transformers_openvino':
result = run_transformers_openvino(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, group_size)
else:
invalidInputError(False, "Unknown test_api " + test_api + ", please check your config.yaml.")
@ -746,6 +748,78 @@ def run_transformer_int4_loadlowbit_npu_win(repo_id,
gc.collect()
return result
def run_transformers_openvino(repo_id,
local_model_hub,
in_out_pairs,
warm_up,
num_trials,
num_beams,
low_bit,
batch_size,
group_size):
from optimum.intel import OVModelForCausalLM
from transformers import AutoTokenizer, LlamaTokenizer, PretrainedConfig
ir_repo_id = (repo_id + '-ov-' + low_bit + '-' +str(group_size))
model_path = get_model_path(ir_repo_id, local_model_hub)
ov_config = {"PERFORMANCE_HINT": "LATENCY",
"NUM_STREAMS": "1", "CACHE_DIR": ""}
config_dict = dict(pretrained_model_name_or_path=model_path,
trust_remote_code=True,
use_cache=True, low_cpu_mem_usage=True)
config = PretrainedConfig(**config_dict)
# Load model converted by OpenVINO
st = time.perf_counter()
if repo_id in LLAMA_IDS:
model = OVModelForCausalLM.from_pretrained(model_path, device="GPU",
ov_config=ov_config, config=config).eval()
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
else:
model = OVModelForCausalLM.from_pretrained(model_path, device="GPU",
ov_config=ov_config, config=config).eval()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
end = time.perf_counter()
load_time = end - st
print(">> loading of model costs {}s".format(load_time))
model = BenchmarkWrapper(model)
result = {}
with torch.inference_mode():
for in_out in in_out_pairs:
in_out_len = in_out.split("-")
in_len = int(in_out_len[0])
out_len = int(in_out_len[1])
input_str = get_continuation_input_str(in_len, tokenizer)
# As different tokenizer has different encodings,
# slice the input_ids to ensure the prompt length is required length.
input_ids = tokenizer.encode(input_str, return_tensors="pt")
input_ids = input_ids[:, :in_len]
true_str = tokenizer.batch_decode(input_ids)[0]
input_list = [true_str] * batch_size
input_ids = tokenizer(input_list, return_tensors="pt").input_ids
input_ids = input_ids[:, :in_len]
actual_in_len = input_ids.shape[1]
result[in_out] = []
for i in range(num_trials + warm_up):
st = time.perf_counter()
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
min_new_tokens=out_len, num_beams=num_beams)
end = time.perf_counter()
print("model generate cost: " + str(end - st))
output = tokenizer.batch_decode(output_ids)
print(output[0])
actual_out_len = output_ids.shape[1] - actual_in_len
if i >= warm_up:
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
actual_in_len, actual_out_len, load_time])
del model
gc.collect()
return result
def run_optimize_model_gpu(repo_id,
local_model_hub,
in_out_pairs,
@ -2108,6 +2182,7 @@ if __name__ == '__main__':
use_fp16_torch_dtype = False
task = 'continuation'
optimize_model = False # only for transformers_int4_npu_win
group_size = 64
if 'streaming' in conf:
streaming = conf['streaming']
if 'use_fp16_torch_dtype' in conf:
@ -2116,6 +2191,8 @@ if __name__ == '__main__':
task = conf['task']
if 'optimize_model' in conf:
optimize_model = conf['optimize_model']
if 'group_size' in conf:
group_size = conf['group_size']
lookahead = False
transpose_value_cache = True
if 'transpose_value_cache' in conf:
@ -2145,7 +2222,7 @@ if __name__ == '__main__':
if task in ['QA', 'summarize'] and conf['num_beams'] == 1 and batch_size == 1:
lookahead = True
run_model(model, api, in_out_pairs, conf['local_model_hub'], conf['warm_up'], conf['num_trials'], conf['num_beams'],
conf['low_bit'], conf['cpu_embedding'], batch_size, streaming, use_fp16_torch_dtype, lookahead, task, optimize_model, transpose_value_cache)
conf['low_bit'], conf['cpu_embedding'], batch_size, streaming, use_fp16_torch_dtype, lookahead, task, optimize_model, transpose_value_cache, group_size)
df = pd.DataFrame(results, columns=['model', '1st token avg latency (ms)', '2+ avg latency (ms/token)', 'encoder time (ms)',
'input/output tokens', 'batch_size', 'actual input/output tokens', 'num_beams', 'low_bit', 'cpu_embedding',
'model loading time (s)', 'peak mem (GB)', 'streaming', 'use_fp16_torch_dtype'])

View file

@ -0,0 +1,107 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/openvino-dev-samples/Qwen2.openvino/blob/main/convert.py
import os
from pathlib import Path
import warnings
from transformers import AutoTokenizer, LlamaTokenizer
from optimum.intel import OVWeightQuantizationConfig
from optimum.intel.openvino import OVModelForCausalLM
from run import LLAMA_IDS, get_model_path
current_dir = os.path.dirname(os.path.realpath(__file__))
def save_model_to_openvino(repo_id,
local_model_hub,
low_bit,
group_size,
):
model_path = get_model_path(repo_id, local_model_hub)
ir_repo_id = (repo_id.split(
"/")[1] + '-ov-' + low_bit + '-' +str(group_size))
if local_model_hub:
repo_model_name = repo_id.split(
"/")[1] + '-ov-' + low_bit + '-' +str(group_size)
ir_model_path = local_model_hub + os.path.sep + repo_model_name
ir_model_path = Path(ir_model_path)
else:
ir_model_path = Path(ir_repo_id)
if not ir_model_path.exists():
os.mkdir(ir_model_path)
compression_configs = {
"sym": True,
"group_size": group_size,
"ratio": 1.0,
}
print(">> Exporting IR")
if low_bit == "sym_int4":
compression_configs['sym'] = True
ov_model = OVModelForCausalLM.from_pretrained(model_path, export=True,
trust_remote_code=True,
compile=False, quantization_config=OVWeightQuantizationConfig(
bits=4, **compression_configs)).eval()
elif low_bit == "asym_int4":
compression_configs['sym'] = False
ov_model = OVModelForCausalLM.from_pretrained(model_path, export=True,
trust_remote_code=True,
compile=False, quantization_config=OVWeightQuantizationConfig(
bits=4, **compression_configs)).eval()
print(">> Saving IR")
ov_model.save_pretrained(ir_model_path)
print(">> Exporting tokenizer")
if repo_id in LLAMA_IDS:
tokenizer = LlamaTokenizer.from_pretrained(model_path,
trust_remote_code=True)
else:
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
tokenizer.save_pretrained(ir_model_path)
print(">> Exporting IR tokenizer")
from optimum.exporters.openvino.convert import export_tokenizer
export_tokenizer(tokenizer, ir_model_path)
print(f">> Finished saving OpenVINO IR for {repo_id} in {low_bit} with group size {group_size}")
del ov_model
del model_path
if __name__ == '__main__':
supported_precision = ["sym_int4", "asym_int4"]
from omegaconf import OmegaConf
conf = OmegaConf.load(f'{current_dir}/config.yaml')
if conf['low_bit'] in supported_precision:
for model in conf.repo_id:
save_model_to_openvino(repo_id=model,
local_model_hub=conf['local_model_hub'],
low_bit=conf['low_bit'],
group_size=conf['group_size'],)
else:
warnings.warn(f"low_bit {conf['low_bit']} is not supported "
"in all-in-one benchmark for OpenVINO tests. Only "
'sym_int4 and asym_int4 is currently supported for "transformers_openvino" test api.')