* Remove model with optimize_model=False in NPU verified models tables, and remove related example * Remove experimental in run optimized model section title * Unify model table order & example cmd * Move embedding example to separate folder & update quickstart example link * Add Quickstart reference in main NPU readme * Small fix * Small fix * Move save/load examples under NPU/HF-Transformers-AutoModels * Add low-bit and polish arguments for LLM Python examples * Small fix * Add low-bit and polish arguments for Multi-Model examples * Polish argument for Embedding models * Polish argument for LLM CPP examples * Add low-bit and polish argument for Save-Load examples * Add accuracy tuning tips for examples * Update NPU qucikstart accuracy tuning with low-bit optimizations * Add save/load section to qucikstart * Update CPP example sample output to EN * Add installation regarding cmake for CPP examples * Small fix * Small fix * Small fix * Small fix * Small fix * Small fix * Unify max prompt length to 512 * Change recommended low-bit for Qwen2.5-3B-Instruct to asym_int4 * Update based on comments * Small fix
		
			
				
	
	
	
	
		
			8 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	Run HuggingFace transformers Models on Intel NPU
In this directory, you will find examples on how to directly run HuggingFace transformers models on Intel NPUs (leveraging Intel NPU Acceleration Library). See the table blow for verified models.
Verified Models
| Model | Model Link | 
|---|---|
| Llama2 | meta-llama/Llama-2-7b-chat-hf | 
| Llama3 | meta-llama/Meta-Llama-3-8B-Instruct | 
| Llama3.2 | meta-llama/Llama-3.2-1B-Instruct, meta-llama/Llama-3.2-3B-Instruct | 
| GLM-Edge | THUDM/glm-edge-1.5b-chat, THUDM/glm-edge-4b-chat | 
| Qwen2 | Qwen/Qwen2-1.5B-Instruct, Qwen/Qwen2-7B-Instruct | 
| Qwen2.5 | Qwen/Qwen2.5-3B-Instruct, Qwen/Qwen2.5-7B-Instruct | 
| MiniCPM | openbmb/MiniCPM-1B-sft-bf16, openbmb/MiniCPM-2B-sft-bf16 | 
| Baichuan2 | baichuan-inc/Baichuan2-7B-Chat | 
Please refer to Quickstart for details about verified platforms.
0. Prerequisites
For ipex-llm NPU support, please refer to Quickstart for details about the required preparations.
1. Install & Runtime Configurations
1.1 Installation on Windows
We suggest using conda to manage environment:
conda create -n llm python=3.11
conda activate llm
:: install ipex-llm with 'npu' option
pip install --pre --upgrade ipex-llm[npu]
:: [optional] for Llama-3.2-1B-Instruct & Llama-3.2-3B-Instruct
pip install transformers==4.45.0 accelerate==0.33.0
:: [optional] for glm-edge-1.5b-chat & glm-edge-4b-chat
pip install transformers==4.47.0 accelerate==0.26.0
Please refer to Quickstart for more details about ipex-llm installation on Intel NPU.
1.2 Runtime Configurations
Please refer to Quickstart for environment variables setting based on your device.
2. Run Optimized Models
The examples below show how to run the optimized HuggingFace model implementations on Intel NPU, including
- Llama2-7B
 - Llama3-8B
 - Llama3.2-1B
 - Llama3.2-3B
 - GLM-Edge-1.5B
 - GLM-Edge-4B
 - Qwen2-1.5B
 - Qwen2-7B
 - Qwen2.5-3B
 - Qwen2.5-7B
 - MiniCPM-1B
 - MiniCPM-2B
 - Baichuan2-7B
 
Run
:: to run Llama-2-7b-chat-hf
python llama2.py --repo-id-or-model-path "meta-llama/Llama-2-7b-chat-hf" --save-directory <converted_model_path>
:: to run Meta-Llama-3-8B-Instruct
python llama3.py --repo-id-or-model-path "meta-llama/Meta-Llama-3-8B-Instruct" --save-directory <converted_model_path>
:: to run Llama-3.2-1B-Instruct
python llama3.py --repo-id-or-model-path "meta-llama/Llama-3.2-1B-Instruct" --save-directory <converted_model_path>
:: to run Llama-3.2-3B-Instruct
python llama3.py --repo-id-or-model-path "meta-llama/Llama-3.2-3B-Instruct" --save-directory <converted_model_path>
:: to run glm-edge-1.5b-chat
python glm.py --repo-id-or-model-path "THUDM/glm-edge-1.5b-chat" --save-directory <converted_model_path>
:: to run glm-edge-4b-chat
python glm.py --repo-id-or-model-path "THUDM/glm-edge-4b-chat" --save-directory <converted_model_path>
:: to run Qwen2-1.5B-Instruct
python qwen.py --repo-id-or-model-path "Qwen/Qwen2-1.5B-Instruct"  --save-directory <converted_model_path>
:: to run Qwen2-7B-Instruct
python qwen.py --repo-id-or-model-path "Qwen/Qwen2-7B-Instruct" --save-directory <converted_model_path>
:: to run Qwen2.5-3B-Instruct
python qwen.py --repo-id-or-model-path "Qwen/Qwen2.5-3B-Instruct" --low-bit asym_int4 --save-directory <converted_model_path>
:: to run Qwen2.5-7B-Instruct
python qwen.py --repo-id-or-model-path "Qwen/Qwen2.5-7B-Instruct" --save-directory <converted_model_path>
:: to run MiniCPM-1B-sft-bf16
python minicpm.py --repo-id-or-model-path "openbmb/MiniCPM-1B-sft-bf16" --save-directory <converted_model_path>
:: to run MiniCPM-2B-sft-bf16
python minicpm.py --repo-id-or-model-path "openbmb/MiniCPM-2B-sft-bf16" --save-directory <converted_model_path>
:: to run Baichuan2-7B-Chat
python baichuan2.py --repo-id-or-model-path "baichuan-inc/Baichuan2-7B-Chat" --save-directory <converted_model_path>
Arguments info:
--repo-id-or-model-path REPO_ID_OR_MODEL_PATH: argument defining the huggingface repo id for the model (e.g.Meta-llama/Llama-2-7b-chat-hffor Llama2-7B) to be downloaded, or the path to the huggingface checkpoint folder.--prompt PROMPT: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be"What is AI?"or"AI是什么?".--n-predict N_PREDICT: argument defining the max number of tokens to predict. It is default to be32.--max-context-len MAX_CONTEXT_LEN: argument defining the maximum sequence length for both input and output tokens. It is default to be1024.--max-prompt-len MAX_PROMPT_LEN: argument defining the maximum number of tokens that the input prompt can contain. It is default to be512.--low-bitLOW_BIT: argument defining the low bit optimizations that will be applied to the model. Current available options are"sym_int4","asym_int4"and"sym_int8", with"sym_int4"as the default.--disable-streaming: argument defining whether to disable the streaming mode for generation.--save-directory SAVE_DIRECTORY: argument defining the path to save converted model. If it is a non-existing path, the original pretrained model specified byREPO_ID_OR_MODEL_PATHwill be loaded, otherwise the lowbit model inSAVE_DIRECTORYwill be loaded.
Troubleshooting
Accuracy Tuning
If you enconter output issues when running the examples, you could try the following methods to tune the accuracy:
- 
Before running the example, consider setting an additional environment variable
IPEX_LLM_NPU_QUANTIZATION_OPT=1to enhance output quality. - 
If you are using the default
LOW_BITvalue (i.e.sym_int4optimizations), you could try to use--low-bit "asym_int4"instead to tune the output quality. - 
You could refer to the Quickstart for more accuracy tuning strategies.
 
Important
Please note that to make the above methods taking effect, you must specify a new folder for
SAVE_DIRECTORY. Reusing the sameSAVE_DIRECTORYwill load the previously saved low-bit model, and thus making the above accuracy tuning strategies ineffective.
Better Performance with High CPU Utilization
You could enable optimization by setting the environment variable with set IPEX_LLM_CPU_LM_HEAD=1 for better performance. But this will cause high CPU utilization.
Sample Output
meta-llama/Llama-2-7b-chat-hf
Inference time: xxxx s
-------------------- Input --------------------
<s><s> [INST] <<SYS>>
<</SYS>>
What is AI? [/INST]
-------------------- Output --------------------
<s><s> [INST] <<SYS>>
<</SYS>>
What is AI? [/INST]  AI (Artificial Intelligence) is a field of computer science and engineering that focuses on the development of intelligent machines that can perform tasks