ipex-llm/python/llm/src/ipex_llm/vllm/outputs.py
Wang, Jian4 9df70d95eb
Refactor bigdl.llm to ipex_llm (#24)
* Rename bigdl/llm to ipex_llm

* rm python/llm/src/bigdl

* from bigdl.llm to from ipex_llm
2024-03-22 15:41:21 +08:00

156 lines
5.9 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/vllm-project/vllm/blob/v0.2.1.post1/vllm/outputs.py
# which is licensed under Apache License 2.0
#
# Copyright 2023 The vLLM team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# bigdl-llm Intel specified code change
from typing import Dict, List, Optional
from ipex_llm.vllm.sequence import SequenceGroup, SequenceStatus
class CompletionOutput:
"""The output data of one completion output of a request.
Args:
index: The index of the output in the request.
text: The generated output text.
token_ids: The token IDs of the generated output text.
cumulative_logprob: The cumulative log probability of the generated
output text.
logprobs: The log probabilities of the top probability words at each
position if the logprobs are requested.
finish_reason: The reason why the sequence is finished.
"""
def __init__(
self,
index: int,
text: str,
token_ids: List[int],
cumulative_logprob: float,
logprobs: Optional[List[Dict[int, float]]],
finish_reason: Optional[str] = None,
output_token_latency: Optional[List[float]] = None,
) -> None:
# bigdl-llm change start
# summary: add token-recording arguments
self.index = index
self.text = text
self.token_ids = token_ids
self.cumulative_logprob = cumulative_logprob
self.logprobs = logprobs
self.finish_reason = finish_reason
self.output_token_latency = output_token_latency
# bigdl-llm change end
def finished(self) -> bool:
return self.finish_reason is not None
def __repr__(self) -> str:
return (f"CompletionOutput(index={self.index}, "
f"text={self.text!r}, "
f"token_ids={self.token_ids}, "
f"cumulative_logprob={self.cumulative_logprob}, "
f"logprobs={self.logprobs}, "
f"finish_reason={self.finish_reason})"
f"output_token_latency={self.output_token_latency}, ")
class RequestOutput:
"""The output data of a request to the LLM.
Args:
request_id: The unique ID of the request.
prompt: The prompt string of the request.
prompt_token_ids: The token IDs of the prompt.
outputs: The output sequences of the request.
finished: Whether the whole request is finished.
"""
def __init__(
self,
request_id: str,
prompt: str,
prompt_token_ids: List[int],
outputs: List[CompletionOutput],
finished: bool,
) -> None:
self.request_id = request_id
self.prompt = prompt
self.prompt_token_ids = prompt_token_ids
self.outputs = outputs
self.finished = finished
@classmethod
def from_seq_group(cls, seq_group: SequenceGroup) -> "RequestOutput":
# Get the top-n sequences.
n = seq_group.sampling_params.n
seqs = seq_group.get_seqs()
if seq_group.sampling_params.use_beam_search:
sorting_key = lambda seq: seq.get_beam_search_score(
seq_group.sampling_params.length_penalty)
else:
sorting_key = lambda seq: seq.get_cumulative_logprob()
sorted_seqs = sorted(seqs, key=sorting_key, reverse=True)
top_n_seqs = sorted_seqs[:n]
# Create the outputs.
outputs: List[CompletionOutput] = []
for seq in top_n_seqs:
logprobs = seq.output_logprobs
if seq_group.sampling_params.logprobs is None:
# NOTE: We need to take care of this case because the sequence
# always has the logprobs of the sampled tokens even if the
# logprobs are not requested.
logprobs = {}
finshed_reason = SequenceStatus.get_finished_reason(seq.status)
output = CompletionOutput(seqs.index(seq), seq.output_text,
seq.get_output_token_ids(),
seq.get_cumulative_logprob(), logprobs,
finshed_reason,
seq.get_output_token_latency())
outputs.append(output)
# Every sequence in the sequence group should have the same prompt.
prompt = top_n_seqs[0].prompt
prompt_token_ids = top_n_seqs[0].data.prompt_token_ids
finished = seq_group.is_finished()
return cls(seq_group.request_id, prompt, prompt_token_ids, outputs,
finished)
def __repr__(self) -> str:
return (f"RequestOutput(request_id={self.request_id}, "
f"prompt={self.prompt!r}, "
f"prompt_token_ids={self.prompt_token_ids}, "
f"outputs={self.outputs}, "
f"finished={self.finished})")