# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Some parts of this file is adapted from # https://github.com/vllm-project/vllm/blob/v0.2.1.post1/vllm/outputs.py # which is licensed under Apache License 2.0 # # Copyright 2023 The vLLM team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # bigdl-llm Intel specified code change from typing import Dict, List, Optional from ipex_llm.vllm.sequence import SequenceGroup, SequenceStatus class CompletionOutput: """The output data of one completion output of a request. Args: index: The index of the output in the request. text: The generated output text. token_ids: The token IDs of the generated output text. cumulative_logprob: The cumulative log probability of the generated output text. logprobs: The log probabilities of the top probability words at each position if the logprobs are requested. finish_reason: The reason why the sequence is finished. """ def __init__( self, index: int, text: str, token_ids: List[int], cumulative_logprob: float, logprobs: Optional[List[Dict[int, float]]], finish_reason: Optional[str] = None, output_token_latency: Optional[List[float]] = None, ) -> None: # bigdl-llm change start # summary: add token-recording arguments self.index = index self.text = text self.token_ids = token_ids self.cumulative_logprob = cumulative_logprob self.logprobs = logprobs self.finish_reason = finish_reason self.output_token_latency = output_token_latency # bigdl-llm change end def finished(self) -> bool: return self.finish_reason is not None def __repr__(self) -> str: return (f"CompletionOutput(index={self.index}, " f"text={self.text!r}, " f"token_ids={self.token_ids}, " f"cumulative_logprob={self.cumulative_logprob}, " f"logprobs={self.logprobs}, " f"finish_reason={self.finish_reason})" f"output_token_latency={self.output_token_latency}, ") class RequestOutput: """The output data of a request to the LLM. Args: request_id: The unique ID of the request. prompt: The prompt string of the request. prompt_token_ids: The token IDs of the prompt. outputs: The output sequences of the request. finished: Whether the whole request is finished. """ def __init__( self, request_id: str, prompt: str, prompt_token_ids: List[int], outputs: List[CompletionOutput], finished: bool, ) -> None: self.request_id = request_id self.prompt = prompt self.prompt_token_ids = prompt_token_ids self.outputs = outputs self.finished = finished @classmethod def from_seq_group(cls, seq_group: SequenceGroup) -> "RequestOutput": # Get the top-n sequences. n = seq_group.sampling_params.n seqs = seq_group.get_seqs() if seq_group.sampling_params.use_beam_search: sorting_key = lambda seq: seq.get_beam_search_score( seq_group.sampling_params.length_penalty) else: sorting_key = lambda seq: seq.get_cumulative_logprob() sorted_seqs = sorted(seqs, key=sorting_key, reverse=True) top_n_seqs = sorted_seqs[:n] # Create the outputs. outputs: List[CompletionOutput] = [] for seq in top_n_seqs: logprobs = seq.output_logprobs if seq_group.sampling_params.logprobs is None: # NOTE: We need to take care of this case because the sequence # always has the logprobs of the sampled tokens even if the # logprobs are not requested. logprobs = {} finshed_reason = SequenceStatus.get_finished_reason(seq.status) output = CompletionOutput(seqs.index(seq), seq.output_text, seq.get_output_token_ids(), seq.get_cumulative_logprob(), logprobs, finshed_reason, seq.get_output_token_latency()) outputs.append(output) # Every sequence in the sequence group should have the same prompt. prompt = top_n_seqs[0].prompt prompt_token_ids = top_n_seqs[0].data.prompt_token_ids finished = seq_group.is_finished() return cls(seq_group.request_id, prompt, prompt_token_ids, outputs, finished) def __repr__(self) -> str: return (f"RequestOutput(request_id={self.request_id}, " f"prompt={self.prompt!r}, " f"prompt_token_ids={self.prompt_token_ids}, " f"outputs={self.outputs}, " f"finished={self.finished})")