* Create install.md * Update install_cpu.md * Delete original docs/mddocs/Overview/install_cpu.md * Update install_cpu.md * Update install_gpu.md * update llm.md and install.md * Update docs in KeyFeatures * Review and fix typos * Fix on folded NOTE * Small fix * Small fix * Remove empty known_issue.md * Small fix * Small fix * Further fix * Fixes * Fix --------- Co-authored-by: Yuwen Hu <yuwen.hu@intel.com>
		
			
				
	
	
	
	
		
			1.2 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			1.2 KiB
		
	
	
	
	
	
	
	
Native Format
You may also convert Hugging Face Transformers models into native INT4 format for maximum performance as follows.
Note
Currently only llama/bloom/gptneox/starcoder/chatglm model families are supported; you may use the corresponding API to load the converted model. (For other models, you can use the Hugging Face
transformersformat as described here)
# convert the model
from ipex_llm import llm_convert
ipex_llm_path = llm_convert(model='/path/to/model/',
                            outfile='/path/to/output/', outtype='int4', model_family="llama")
# load the converted model
# switch to ChatGLMForCausalLM/GptneoxForCausalLM/BloomForCausalLM/StarcoderForCausalLM to load other models
from ipex_llm.transformers import LlamaForCausalLM
llm = LlamaForCausalLM.from_pretrained("/path/to/output/model.bin", native=True, ...)
# run the converted model
input_ids = llm.tokenize(prompt)
output_ids = llm.generate(input_ids, ...)
output = llm.batch_decode(output_ids)
Note
See the complete example here